Solutions to Logic Problems

1.
(a) \(A \land (B \lor C) \) \((A \land B) \lor C \)
Not equivalent: let \(A = F, B = F, C = T \)

(b) \(A \lor (B \land C) \) \((A \lor B) \land C \)
This is essentially the same as part (a) (since \(\land \) and \(\lor \) are commutative operators). Not equivalent: let \(A = T, B = F, C = F \)

(c) \(A \rightarrow (B \lor C) \) \((A \rightarrow B) \lor (A \rightarrow C) \)
Equivalent.

(d) \(A \rightarrow (B \land C) \) \((A \rightarrow B) \land (A \rightarrow C) \)
Equivalent.

(e) \((A \lor B) \rightarrow C \) \((A \rightarrow C) \lor (B \rightarrow C) \)
Not equivalent: let \(A = F, B = T, C = F \).

(f) \((A \land B) \rightarrow C \) \((A \rightarrow C) \land (B \rightarrow C) \)
Not equivalent: let \(A = F, B = T, C = F \).

(g) \(\neg(A \rightarrow B) \) \(\neg B \rightarrow \neg A \)
Not equivalent — they give different answers for every possible value of \(A \) and \(B \). In fact, these are exact opposites, which means that \(A \rightarrow B \) is equivalent to \(\neg B \rightarrow \neg A \).
(This is the contrapositive law.)

(h) \(\neg A \rightarrow B \) \(A \rightarrow \neg B \)
Not equivalent: let \(A = F, B = F \).

2. Bring the negation symbol inside the following formula as far as you can:
\[\neg ((\exists x)(\forall y)(\exists z)x \lor y \rightarrow z) \]
\[(\forall x)(\exists y)(\forall z)(x \lor y) \land \neg z \]

3. Using resolution, show that the set of rules and facts given by:
\[\neg B \lor \neg C \lor A \]
\[\neg D \lor B \]
can be used to prove A.

We add the "fact" $\neg A$ to the knowledge base and then proceed to produce a contradiction.

(a) $\neg B \lor \neg C \lor A$
(b) $\neg D \lor B$
(c) C
(d) D
(e) $\neg A$

Combining (a) and (e) gives us (f): $\neg B \lor \neg C$. Combining (c) and (f) gives us (g): $\neg B$. Combining (b) and (d) gives us (h): B. Our contradiction is (g) and (h): $B \land \neg B$. Therefore, the thing that caused the contradiction, $\neg A$, must be false, so A must be true.