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The Effectiveness of Test Coverage Criteria for Relational
Database Schema Integrity Constraints
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Despite industry advice to the contrary, there has been little work that has sought to test that a relational
database’s schema has correctly specified integrity constraints. These critically important constraints ensure
the coherence of data in a database, defending it from manipulations that could violate requirements such
as “usernames must be unique” or “the host name cannot be missing or unknown.” This article is the first to
propose coverage criteria, derived from logic coverage criteria, that establish different levels of testing for the
formulation of integrity constraints in a database schema. These range from simple criteria that mandate
the testing of successful and unsuccessful INSERT statements into tables to more advanced criteria that test
the formulation of complex integrity constraints such as multi-column PRIMARY KEYs and arbitrary CHECK

constraints. Due to different vendor interpretations of the structured query language (SQL) specification
with regard to how integrity constraints should actually function in practice, our criteria crucially account
for the underlying semantics of the database management system (DBMS). After formally defining these
coverage criteria and relating them in a subsumption hierarchy, we present two approaches for automatically
generating tests that satisfy the criteria. We then describe the results of an empirical study that uses
mutation analysis to investigate the fault-finding capability of data generated when our coverage criteria
are applied to a wide variety of relational schemas hosted by three well-known and representative DBMSs—
HyperSQL, PostgreSQL, and SQLite. In addition to revealing the complementary fault-finding capabilities
of the presented criteria, the results show that mutation scores range from as low as just 12% of mutants
being killed with the simplest of criteria to 96% with the most advanced.
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1. INTRODUCTION

It is often said that the data in an organization’s database is one of the most valu-
able assets that it can own [Silberschatz et al. 2010]. Having recently found use in
application areas ranging from politics and government [Butler 2012] to the simula-
tion of astrophysical phenomenon [Loebman et al. 2009], the relational database is a
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prevalent data management technology. In the context of relational databases, integrity
constraints are tasked with protecting the coherency and consistency of the managed
data. Responsible for ensuring that the database management system (DBMS) rejects
structured query language (SQL) statements that would introduce non-complying data,
the integrity constraints prevent the database from being “corrupted” with potentially
invalid entries.

Integrity constraints are part of the definition of a schema for a relational database
[Silberschatz et al. 2010]. A relational database schema defines what types of data
will be stored in the database and how they are grouped into tables. Through in-
tegrity constraints, a developer can specify which columns of which tables should have
unique data values (through PRIMARY KEY constraints and UNIQUE constraints), which
data values should not be marked as “unknown” or “missing” (through NOT NULL con-
straints), which values should be related to values in other tables (through FOREIGN
KEY constraints), and which values should satisfy domain-specific predicates (through
the specification of CHECK constraints). Surprisingly, and despite industry advice to the
contrary [Guz 2011], there has been very little work on testing relational database
schemas to ensure that integrity constraints have been specified correctly. This could
lead to serious bugs in a database application, if, for example, two users are allowed to
have the same identification value, or if invalid monetary or stock values are permitted
into the database.

Test suites for database schemas are not only valuable for checking the correct for-
mulation of integrity constraints for a new application, they are also an important
resource for regression testing and for when the underlying database management
system (DBMS) is changed. This is because different DBMS vendors have different
interpretations of the SQL standard, and thus implement integrity constraints differ-
ently. For example, for most DBMSs, a PRIMARY KEY constraint declared over columns
of a database implicitly means that those columns should also not be NULL. This is
not the case for SQLite. For most DBMSs, NULL values are freely allowed for columns
declared as part of UNIQUE constraints. Microsoft SQL Server, however, will reject NULL
values after the first on the basis that further NULL values are not “unique.” These
subtle differences can cause problems when an application is developed using a local
lightweight DBMS such as SQLite but then deployed to an enterprise DBMS such
as PostgreSQL. It is therefore important to verify, through a series of systematically
designed and highly effective tests, both that the schema is behaving the same across
the different DBMSs with which the database is intended to be used and correct after
its initial specification and subsequent modifications.

In this article, we propose a family of coverage criteria for testing the specification of
integrity constraints in a relational database schema. We define two flavors of criterion:
constraint coverage criteria and column coverage criteria. With constraint coverage, we
show how integrity constraints can be expressed as predicates and how work on logic
coverage [Ammann and Offutt 2008] can be used as the foundation for a set of criteria
that handles three-valued logic, dependencies on existing table data, and testing at
different levels of thoroughness. With the column coverage flavor of criteria, we show
how test requirements can be generated that may check for integrity constraints po-
tentially omitted from the schema’s definition. Since these criteria can support the
identification of both faults of omission and commission, they contrast with most other
work on test coverage, which has historically been largely restricted to testing “what’s
there” and normally limited to only detecting faults of commission [Glass 2001; Ploski
et al. 2007].

Following this, we propose a framework for automatically generating concrete test
cases for the test requirements necessitated by our criteria. Currently, this framework
employs two types of search methods for generating the test cases. The first is an
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augmented random approach, seeded with constants mined from the databases’ rela-
tional schema. Since this approach is known to struggle with difficult test requirements
whose test data values cannot be found easily by “chance” [Harman et al. 2010], we
also use a directed search-based approach based on Korel’s alternating variable method
(AVM) [Kapfhammer et al. 2013; Korel 1990]. Search-based approaches use a fitness
function to guide the search towards required test data. Then, our framework formu-
lates the generated test values into SQL INSERT statements. By checking whether the
DBMS accepts (i.e., the data is entered into the database) or rejects (i.e., the data is not
added to the database) the INSERT statements, the tester can ascertain the correctness
of the integrity constraint formulation in the schema.

Finally, we present the results of an empirical study in which we evaluate our criteria
using the test suites that the two data generators created for 32 relational schemas
hosted by three real-world DBMSs: HyperSQL, PostgreSQL, and SQLite. To evaluate
the quality of the generated tests, we perform a mutation analysis, simulating “faults”
by making small changes to the original schemas under test. The percentage of mu-
tants that were detected by our test suites ranged widely depending on the criteria
used. For very simple criteria—which are arguably only marginally better than a se-
ries of ad-hoc sanity checks that a tester might manually perform—only low detection
rates are achievable, where just 12% of mutants are “killed.” For the most advanced
criteria that engender the most thorough set of test requirements, higher detection
rates are possible, where up to 96% of the mutants can be killed. Since the experi-
ments consider both a wide variety of schemas—many of which are from real-world
databases—and three representative database management systems, we judge that
they reveal the benefit of using the presented coverage criteria to guide the testing of
relational database integrity constraints.

Therefore, the contributions of this article are as follows.

(1) The definition of nine coverage criteria that are organized in subsumption hierar-
chies; these criteria aim to detect both faults of commission and omission in the
schema of a relational database that is hosted by three representative and widely
used database management systems (Section 3).

(2) A framework that uses the presented coverage criteria to guide the generation of
test cases that are formulated as complete SQL INSERT statements; currently, this
automated and extensible framework supports both a random and a search-based
method for test suite generation (Section 4).

(3) The results of an empirical study that uses mutation analysis to assess the testing
strength of our coverage criteria. Incorporating 32 diverse schemas and three well-
known and representative DBMSs, the study finds that there is a broad range of
mutation scores from the weakest criteria to the strongest. The experiments also
reveal that criteria in different subsumption hierarchies are more suited to killing
different types of mutants and that criteria can be combined to give the highest
fault-finding capability (Section 5).

2. BACKGROUND

2.1. Relational Database Schemas and Integrity Constraints

Databases form the backbone of many different types of software applications, power-
ing everything from operating systems, mobile devices, content delivery networks, and
websites, to large organizations including banks and stock exchanges [Kapfhammer
2007; Silberschatz et al. 2010]. They range from very large databases that serve mul-
tiple applications, often concurrently, to smaller databases embedded within programs
to manage runtime information and achieve persistence of data.
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Fig. 1. The example BrowserCookies schema, for managing cookie information in an Internet browser.

Despite the age of “big data,” and the existence of approaches to handling either
semi-structured or unstructured data (e.g., [Escriva et al. 2012; Jagadish et al. 2002]),
relational databases are still a very popular method for organizing data in a fashion that
supports fast and reliable manipulation and retrieval. Since databases offer features
that are often complementary to big data solutions [Stonebraker et al. 2010] and many
individuals and organizations do not currently need to manage large-scale datasets
[Howe and Halperin 2012], the relational database is a well-established and commonly
used data management technology [Silberschatz et al. 2010].

In order to store data in a relational database, a schema must be defined to specify
how information will be structured into tables [Silberschatz et al. 2010]. Each table has
a number of columns that contain specific types of data. Data entries into a table are
referred to as records or rows, where each row involves data elements for each column of
the table. In addition, a number of integrity constraints may be specified over columns of
each table. Designed to preserve the consistency of the database, integrity constraints
place restrictions on data that the DBMS should allow into it.

Users interact with relational databases using SQL statements. A schema is speci-
fied with SQL statements submitted to a database management system (DBMS) such
as PostgreSQL1 or SQLite.2 Figure 1 shows an example of a schema declaration involv-
ing two CREATE TABLE SQL statements, hereafter referred to as the BrowserCookies
example, inspired by the SQLite database that Mozilla Firefox uses to manage cookies.
It distills many aspects of schemas that are both observed in the real subjects used in
our empirical study in Section 5 and necessary for understanding the techniques de-
veloped in this article. These features include different column types, examples of the
different types of integrity constraint, and the various ways in which those constraints
have been declared.

The schema involves two tables: cookies and places. Each table declaration involves
the definition of individual columns (lines 2–6 and 11–18, respectively), with associated
data types. The cookies table stores information about each distinct cookie, including
its name and value, represented as textual strings. Additional columns record the time

1http://www.postgresql.org/.
2http://sqlite.com/.
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Fig. 2. INSERT statements and final table data for the BrowserCookies schema of Figure 1.

(in integer format) when the cookie was created, last accessed, and when it expires.
Each cookie also has an associated host and path which links it to an entry in the
places table.

Figure 2 depicts these tables conceptually, containing data as a result of various
SQL INSERT statements submitted to the DBMS. While INSERT statements 1 and 3
were accepted by the DBMS, statements 2 and 4 were rejected, since they failed to
satisfy the restrictions specified by integrity constraints declared on the schema.

Integrity constraints help to define the structure of a database and work to stop
invalid data values from being entered into database tables. PRIMARY KEY constraints
define subsets of columns for which the sets of row values should be unique so that
specific rows can be easily retrieved later. Our example illustrates two different styles
of primary key. The cookies table uses the integer id column as its primary key
(declared on line 11 of Figure 1). This type of primary key is called a surrogate key,
since a specially generated value is used in preference to actual application data (e.g.,
the column name coupled with host and path). In contrast, the places table uses a
natural key that is the composite of two columns, host and path (declared on line 7)
[Pascal 2000]. INSERT statements 1 and 3 in Figure 2(a) both pass the primary key
constraint that the elements on the columns for which they are specified are unique.
Yet, statement 2 contains an identical pair of values for the primary key pair of the
places table, resulting in its rejection by the DBMS. Additionally, several columns
involve NOT NULL constraints, which ensure that values for a table column are never
“NULL”—a special marker normally used to denote an unknown or nonexistent value.

Columns that do not form primary keys but for which row values must be unique
(sometimes referred to as candidate keys [Silberschatz et al. 2010]) may be declared
using a UNIQUE constraint. In the cookies table, the triple of values for the name, host,
and path columns must be unique, enforcing the rule that the database should not
store a cookie with the same name originating from the same place; this is defined with
the UNIQUE constraint declaration on line 19.
FOREIGN KEY constraints link the rows in one table to rows in some other referenced

table. A foreign key relationship exists between the cookies table and the places table
through the host and path columns, specified by the FOREIGN KEY constraint on line 20
of Figure 1. Figure 2 shows how this constraint is successfully enforced: the foreign key
values for host and url for INSERT statement 3 match the values already inserted into
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the places table by INSERT statement 1. However, there is no matching pair of values in
places for the values of host and url to be inserted into cookies by INSERT statement
4, thus resulting in the rejection of this statement.

Finally, CHECK constraints involve the declaration of arbitrary predicates over table
data. In Figure 1, there are two CHECK constraints, declared on lines 21 and 22. Either
expiry should be zero (signifying the cookie expires when the browser closes) or greater
than last accessed, which in turn should be greater than or equal to creation time.
The latter constraint is not true of the values in INSERT statement 4 of Figure 2, giving
a secondary cause for the DBMS to reject it.

2.1.1. Testing the Specification of Integrity Constraints in Schemas. Despite the large body of
work on the testing of programs, there has been relatively little work devoted to the
testing of the artefacts related to the databases that often drive these programs. One
neglected aspect in the testing of database-centric applications is that of the database
schema, which is often implicitly assumed to be correct and yet frequently subject
to extensive modification throughout the lifetime of an application [Qiu et al. 2013].
However, mistakes made in the design and implementation of the schema can have a
far reaching, and often costly, negative impact on the quality of the rest of a software
application. Schema mistakes may, for example, require the need for regression changes
to be made to program code and to the program’s complex SQL queries that currently
interact with the database on the assumption of a correct schema having been designed
first [Ambler and Sadalage 2006].

A database schema is often an application’s last line of defense against data that com-
promises the integrity of the database’s contents. Without a properly defined schema,
an application may, for instance, incorrectly create two users with the same login ID
or products with prices that are less than zero. Additionally, the correctness of the
schema may be tied to the underlying DBMS. Often, programmers will use a differ-
ent DBMS during the development and deployment phrases of an application. For
instance, SQLite may be used in development, since it is fast and may be used “in-
memory”, whereas PostgreSQL may be used during deployment, since it is more suited
to managing large datasets and handling concurrent accesses.

However, as a consequence of the many different interpretations of the SQL standard
[Kapfhammer 2007], a schema developed for one DBMS may vary in behavior when
it is used with another. For example, SQLite allows primary key columns to be NULL,
whereas for most other DBMSs (e.g., PostgreSQL), NULL is not allowed for primary keys,
in accordance with the SQL standard. Even though most DBMSs do not constrain the
appearance of NULL in columns in UNIQUE constraints, Microsoft SQL Server will only
allow NULL to appear once, on the basis that the secondary NULL is not distinct from
the existing NULL in a column. These are just two of the, potentially many, varied and
nuanced cross-DBMS differences that may be missed as the schema is developed. It
is therefore important to have a test suite asserting that the schema’s behavior is the
same after database deployment as it was during development.

In summary, the relational database schema is a complex software artefact whose
correctness can be imperiled during creation, subsequent modification, or DBMS migra-
tion, thus degrading the quality of an entire application. As such, testing the database
schema is an important activity that is advocated by industry practitioners [Guz 2011].
Yet, there has not, hitherto, been a well-founded basis on which to conduct this testing.
In response to the dearth of a foundation for systematic relational schema testing, this
work develops coverage criteria for the logic encoded by the integrity constraints in
a database’s schema, as introduced in the previous section. Our coverage criteria, as
later defined in Section 3, extend prior work on logic coverage, which we introduce in
the next section.
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2.2. Predicates, Clauses, and Logic Coverage

In the following content, we summarize Ammann and Offutt, who reviewed the prior
work in the literature devoted to logic coverage and the relevant test criteria (e.g.,
[Chilenski and Miller 1994; Dupuy and Leveson 2000]), and clarified some confusion
that has arisen amongst researchers [Ammann and Offutt 2008]. As we define and
compare these logic coverage criteria, we also employ the popular understanding of cri-
teria subsumption dictating that a criterion C subsumes, or is stronger than, criterion
C ′ if and only if every test suite that satisfies C also satisfies C ′ [Zhu et al. 1997].

A predicate is defined as an expression that evaluates to a boolean value, for instance
a = b ∨ x > y. A predicate is a top-level structure that assembles a series of atomic
boolean expressions, or clauses, through the logical connectives (¬,∧,∨,→,⊕, and ↔).
That is, a = b and x > y are clauses for a = b∨ x > y. The simplest type of test coverage
for predicates is predicate coverage, which involves exercising the predicate as true
and false. Alternatively, clause coverage works at the lower level of clauses, mandating
that each one is independently exercised as true and false. Clause coverage does not
subsume predicate coverage: in general, ensuring each clause is evaluated as true and
false does not guarantee the overall predicate will also have been evaluated with both
true and false outcomes [Ammann and Offutt 2008].

To address this, different types of coverage criteria have been developed that test
both clauses and predicates. The perhaps simplest “brute force” coverage criterion of
this type is combinatorial coverage, also known as multiple condition coverage. By
requiring that the clauses of a predicate are evaluated to each possible combination
of truth values, combinatorial coverage subsumes both predicate and clause coverage.
However, even though testers normally like to concentrate on one particular clause of
the predicate at a time, checking its contribution to the overall predicate, combinatorial
coverage does not support this strategy. Another drawback of combinatorial coverage
is the explosion of tests that it causes, which is 2n tests in the worst case for n clauses.

Active clause coverage (ACC), a criterion designed to address these shortcomings,
is “almost identical” [Ammann and Offutt 2008] to the modified condition decision
coverage criterion previously defined by Chilenski and Miller [1994] and adopted in
support of many safety-critical testing environments [Dupuy and Leveson 2000]. ACC
requires the test cases for individual clauses to also influence the truth evaluation of
the predicate, thereby exploiting an overlap of test requirements such that a predicate
and all its clauses are exercised as true and false but in a smaller number of test cases.

ACC takes each clause of a predicate in turn as the focus of a subset of test re-
quirements. The current clause under consideration is referred to as the major clause,
and the remaining clauses the minor clauses. Let p be the predicate that we wish
to test and c1 . . . cn the clauses it contains. The fundamental principle behind ACC is
determination: the circumstances under which a particular clause has the authority
to establish the truth value of the overall predicate. Determination ensures that the
effect of a clause on a predicate is isolated for the purposes of testing, thus allowing a
tester to check how different truth values for the clause induce different truth values
for the predicate. More formally, given a major clause ci in p, ci determines p if the
minor clauses c j ∈ p, j 	= i have truth values such that changing the value of ci changes
the truth value of p [Ammann and Offutt 2008]. The truth value of ci need not be the
same as p, so long as p’s truth value changes as ci also changes. For example, with the
predicate a = b ∨ x > y, the clause a = b determines p when x > y is false.

ACC requires that each clause of a predicate is exercised as true and false, where the
major clause is also responsible for determining the overall predicate. Figure 3 shows
how test requirements are generated for a = b ∨ x > y. With this predicate, the minor
clause must be false for the major clause to determine the predicate. Taking a = b as
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Fig. 3. Deriving active clause coverage test requirements for the predicate a = b∨ x > y. Truth values for a
major clause appear in shaded cells: a = b is the major clause first, followed by x > y. Two test requirements
are generated per clause, with three distinct requirements overall, since requirements 2 and 4 are identical.

the major clause and x > y as the minor clause results in two test requirements (1 and
2 in Figure 3), as x > y is set as false and the truth value of a = b is flipped from true
to false. The same procedure but with x > y as the major clause and a = b as the minor
clause results in two further requirements (3 and 4 in the figure). Since requirements
2 and 4 are identical, three distinct test requirements are generated overall.

As Ammann and Offutt discuss, there are three different instantiations of ACC that
are possible in practice: general active clause coverage (GACC), correlated active clause
coverage (CACC), and restricted active clause coverage (RACC) [Ammann and Offutt
2008]. These differences are only actually observable for certain types of predicates (for
a = b ∨ x > y, all three types of ACC result in an identical set of test requirements).
In this article, we ignore GACC, because in general, it does not subsume predicate
coverage since, unlike CACC and RACC, there is no explicit requirement for the top
level predicate to have been evaluated as true and false. The difference between CACC
and RACC centers on the treatment of the minor clauses. RACC demands that the
truth values of minor clauses are identical as the truth value of the major clause is
alternated. With CACC, there is no such restriction—minor clauses are free to change
truth value so long as the major clause still determines the overall predicate.

For many types of predicate (a = b ∨ x > y being a case in point) CACC and RACC
produce identical test requirements. In these cases, minor clauses must be fixed while
flipping the major clause; otherwise, the major clause would cease to determine the
overall predicate. However, in other instances, fixing minor clauses can lead to ad-
ditional test requirements that are infeasible or hard to satisfy [Ammann and Offutt
2008]. Moreover, in the context of relational database schemas, the distinction between
CACC and RACC is rarely evident because a schema represents the logical conjunction
of predicates. For these reasons, where a predicate entails a difference between CACC
and RACC, the coverage criteria defined in this article are based on the CACC variant
of ACC.

3. COVERAGE CRITERIA FOR INTEGRITY CONSTRAINTS

Integrity constraints may be tested by attempting to insert a new row of data into a
database table and checking whether the row was accepted into the database by the
DBMS (i.e., the data satisfied the integrity constraints) or was rejected (i.e., the data
did not conform to the integrity constraints). By verifying that acceptance and rejection
of data was as expected, a tester can ascertain whether the integrity constraints are
correctly specified in the schema. For instance, it could be that a NOT NULL constraint
was omitted from a column definition, as evidenced by a NULL value being inserted into
a table when it was supposed to be rejected. Or, a tester could observe that the same
username was entered twice into a table for two different users, suggesting that the
schema is missing a UNIQUE constraint.

The key challenge associated with the aforementioned testing strategy is systemati-
cally running the right INSERT statements so as to ensure that a large class of database
schema faults can be reliably detected. To this end, the rest of this section details
coverage criteria for the methodical testing of the integrity constraints in a relational
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database schema. Given a schema s, each criterion involves the production of a set of
test requirements TR. In the next section, we first begin with the preliminaries for a
model of relational databases.

3.1. Preliminaries

In the relational model, due to Codd [1970], a database table is a relation, which is
a set of tuples (i.e., table rows) with identical labels (i.e., column names). A tuple is
written r = (cl1 : v1, . . . , clncl : vncl) for a relation with ncl labels, where cl1...ncl are the
labels and v1...ncl are the values of the tuples corresponding to each label. In our formal
definitions, we adopt the conventions of Maier [1983], using the notation r(cl) to obtain
the value of a tuple r with the label cl and the use of ⊥ as a shorthand for NULL. In the
interest of reducing potential confusion, we standardize by using the DBMS terms for
their relational algebra equivalents; so in the following content, we will use table when
referring to a relation, row when referring to a tuple, and column when referring to a
label.

3.2. Integrity Constraint Predicates

Integrity constraints may be formulated into predicates that evaluate to true when the
values in a row are judged admissible into the database with respect to that particular
constraint, and false when they do not.

Definition 3.1 (Integrity Constraint Predicate). An integrity constraint predicate
icp, for some integrity constraint ic, is a predicate that evaluates to true when data in
some new row nr conforms to ic and false when it does not.

As already discussed in Section 2.1.1, integrity constraint behavior can vary across
different DBMSs. We handle this in our approach by defining integrity constraint func-
tions, which formulate a predicate for an integrity constraint with a particular DBMS.
Different DBMSs can be accommodated by simply using an alternative version of the
function that is tailored for that database.

Figures 4 and 5 show definitions of functions for HyperSQL, PostgreSQL, and SQLite,
which are the three commonly used DBMSs that we focus on in our empirical study
(a function is suitable for use with all three DBMSs, unless otherwise specified). In
general, each function involves some constraint declared on a table tbl and evaluates
the data for some new row nr to be inserted into tbl. Each function derives a predicate
on the basis of a pair of conditions. The first is the null condition, which evaluates
whether the data in nr is admissible to tbl on the basis of the NULL values that nr
potentially contains. Different integrity constraints make allowances for NULL values in
different ways. FOREIGN KEY and UNIQUE constraints will accept rows involving NULL for
any columns in nr for which they are defined (regardless of values for other columns that
make up the constraint). PRIMARY KEY constraints may reject NULL values for all primary
key columns depending on the DBMS. We therefore define two types of functions
for PRIMARY KEYs in Figure 5: one covering the case for HyperSQL and PostgreSQL,
where NULL values are rejected for PRIMARY KEYs, and an alternative version for SQLite,
with which NULL values are accepted. Finally, CHECK constraints admit NULL values for
columns that result in their expression evaluating to unknown.

The second condition is the constraint condition, which evaluates whether the data
in nr conforms to the rationale of the constraint in question. PRIMARY KEY and UNIQUE
constraint conditions evaluate to “true” when the values in nr are unique with respect
to other rows in tbl for columns on which the constraint is defined. For FOREIGN KEY
constraints, the values in nr for columns on which it is defined must match those
in some row of the table referenced by the key. CHECK constraints verify that some
expression holds over the data in nr.
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Fig. 4. Functions for obtaining integrity constraint predicates.

For NOT NULL constraints, there is no null condition, since the very purpose of the
constraint is to reject row values that are NULL, so the integrity constraint predicate
is a solitary constraint condition. Where the constraint accepts NULL values, the in-
tegrity constraint predicate is formed from the disjunction of the null condition and
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Fig. 5. Functions for obtaining PRIMARY KEY integrity constraint predicates. The first function applies to the
PostgreSQL and HyperSQL DBMSs, the secondary function applies to the specific behavior of SQLite.

the constraint condition (e.g., UNIQUE and CHECK constraints), whereas for constraints
that reject NULL values, the integrity constraint predicate is a conjunction of the null
condition and the constraint condition (e.g., PRIMARY KEYs for non-SQLite DBMSs).

Figure 6 gives examples of concrete integrity constraint predicates for constraints
declared for the cookies table of the BrowserCookies example given in Figure 1.

3.3. Acceptance Predicates

By forming a conjunction of the predicates for each integrity constraint involving a
table, we can form a complete predicate that states whether the data in a new row nr
should be accepted into the table or rejected, which we refer to as acceptance predicates.

Definition 3.2 (Acceptance Predicate). An acceptance predicate ap for a table tbl is a
boolean predicate over values in a new row nr to be inserted into tbl that specifies when
data in nr will be successfully admitted into a database for tbl. An acceptance predi-
cate ap is a conjunction of integrity constraint predicates for the integrity constraints
defined for tbl.

3.4. Minimality of Integrity Constraint Declarations

Schemas may involve the declaration of more constraints than necessary to restrict
the types of data that may be accepted into a database table. For instance, the same
integrity constraint may be mistakenly specified twice, especially given the redundant
nature of some SQL features [Kapfhammer 2007]. More subtle types of redundancy
are also possible, depending on the DBMS. One example of this is the declaration of
NOT NULL constraints on PRIMARY KEY columns for HyperSQL and PostgreSQL. Since
for these DBMSs, a PRIMARY KEY column value must implicitly not be NULL, the in-
clusion of further NOT NULL constraints on columns that are also a part of a primary
key is not necessary. We refer to a schema as IC-minimal when it does not involve
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Fig. 6. Integrity constraint predicates for the cookies table of Figure 1, for some new row nr to be in-
serted into the table. The PRIMARY KEY constraint predicate was formed using Figure 5’s “get primary key
constraint predicate” function for the PostgreSQL/HyperSQL DBMSs.

extraneous integrity constraints for a particular DBMS. We define IC-minimality in
terms of acceptance predicates.

Definition 3.3 (IC-Minimality). For each table tbl of a schema s, form an acceptance
predicate ap from the integrity constraint predicates for constraints declared on s in-
volving tbl, ensuring that ap is in conjunctive normal form. We say that s is IC-minimal
for a DBMS when each ap for each tbl does not contain any duplicated conjuncts.

For example, a fragment of the acceptance predicate for the cookies table is

icp1 ∧ icp2 ∧ . . .

That is, the conjunction of icp1, the integrity constraint predicate for the PRIMARY KEY
of the cookies table, and icp2, the predicate for the NOT NULL constraint declared on
the id field, and so on. Each conjunct can be expanded into full predicates, which are
given in Figure 6.

nr(id) 	= ⊥ ∧ ∀er ∈ cookies : nr(id) 	= er(id) ∧ nr(id) 	= ⊥ ∧ . . .

Note that the third conjunct is a repetition of the first. That is, the constraint condition
cc2 of ic f2 is a repetition of the null condition nc1 of ic f1. In order for the BrowserCookies
example to be IC-minimal, the NOT NULL constraint on the id field must be removed. A
simple algorithm for deriving an IC-minimal schema from a non IC-minimal schema
is as follows: take each integrity constraint in turn, remove it, and observe its effect
on the form of each ap. If any originally nonduplicated conjuncts disappear from tblp,
reinstate the constraint, else permanently remove it.

It is important to note that IC-minimality is dependent on the DBMS that hosts
the relational schema. In the preceding example, the primary key predicate was
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formed using the “get primary key predicate” function of Figure 5 for the PostgreSQL/
HyperSQL DBMS. Yet, for SQLite, primary key columns may be NULL: so for that
DBMS, no conjuncts are duplicated in the acceptance predicate, and thus no constraints
need to be removed since the schema is already IC-minimal for that particular DBMS.

3.5. Existing Sufficient Data for Testing

Figures 4–6 show how the evaluation of certain integrity constraints depends on ex-
isting rows of data in the database. For instance, a UNIQUE constraint can never be
violated unless there is already data in the database. A test involving a FOREIGN KEY
constraint is trivial unless there are already keys in the referenced table. In order to
ensure the effectiveness of a test, a database of the schema under test needs to be in
some initial state that prevents tests from being infeasible or trivial. We refer to this
state as being T-sufficient.

Definition 3.4 (T-Sufficiency). The contents of some database d for some schema-
under-test s is said to be T-sufficient with respect to some test requirement tr ∈ TR if
and only if: (1) tr cannot be trivially satisfied by the insertion of an arbitrary row of
data into d; and (2) the contents of d do not render tr infeasible.

For example, the data in the table for Figure 2(c) is T-sufficient for testing satisfaction
and violation of the UNIQUE constraint in the cookies table. From a satisfaction point
of view, any new row entered into cookies must have a unique triple of values for name,
host, and path, while from a violation point of view, a new row must have the same
triple. With an empty database, any row could be entered to satisfy the constraint,
while violation would have been infeasible. In the definition for each of the coverage
criterion in the following sections, we assume a T-sufficient database state for each
tr ∈ TR.

3.6. Simple Coverage Criteria

The very minimum for testing the integrity constraints of a schema is that we attempt
to insert data into tables and test for successful acceptance and rejection of that data.
We formulate this notion into a coverage criterion called acceptance predicate coverage
(APC), based on the concept of acceptance predicates.

Criterion 1 (Acceptance Predicate Coverage (APC)). For each table tbl of the
schema-under-test s, let ap be the acceptance predicate, and add two test requirements
to TR: one where ap evaluates to true, one where ap evaluates to false.

APC results in 2 × |TBL| test requirements, where TBL is the set of tables in the
schema-under-test s. Assuming the database state of Figure 2, the four INSERT state-
ments of Figure 7 fulfill the test requirements of APC.

APC, however, does not ensure that each individual integrity constraint is exercised.
As seen from the preceding examples, rejection of an INSERT is due to the violation of
one particular integrity constraint. To this end, we define integrity constraint coverage
(ICC).

Criterion 2 (Integrity Constraint Coverage (ICC)). For each integrity constraint ic of
s, two test requirements are added to TR, one where the integrity constraint predicate
icp for ic evaluates to true, and one where it evaluates to false.

ICC ensures that for each integrity constraint, there is at least one test case where
the INSERT statement conforms to the constraint, and one that causes the constraint
to be violated. This is achieved by ensuring an evaluation of the constraint’s condition
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Fig. 7. Example INSERTs for obtaining full acceptance predicate coverage of the BrowserCookies schema,
using the database state of Figure 2. INSERT statements 1 and 2 are for the places table: statement 1 is
rejected by the DBMS (as denoted with a cross symbol) because it uses identical primary key values to
the row already in the table, while statement 2 is accepted by the DBMS (as denoted by a tick symbol).
Statements 3 and 4 are for the cookies table: statement 3 is rejected by the DBMS due to a nonexistent
foreign key reference (the values for host and path do not match the pair of values in the row for the places
table). Finally, statement 4 is accepted by the DBMS.

as true and false, and resulting in an upper bound of 2 × |IC| test cases for a schema,
where IC is the set of integrity constraints defined for the schema.

Note that ICC does not subsume APC, because ICC can be satisfied for each integrity
constraint involving some table tbl without evaluating tbl’s acceptance predicate as
true. For a test requirement involving conformance of INSERT statement data for an
integrity constraint, it is not mandated that the data also conforms to all other con-
straints defined for the table such that the data is ultimately accepted into the database
and the table’s acceptance predicate is true. This means that it is hard for the tester to
isolate testing of a particular constraint and reason about its potential conformance or
violation—if the data in some new row nr does not conform to the remaining integrity
constraints, nr could be rejected for a number of reasons unrelated to the current
constraint of interest. We therefore define further criteria, inspired by active clause
coverage, as introduced in Section 2, that aim to isolate the testing of each individual
integrity constraint.

3.7. Active Coverage Criteria

Active integrity constraint coverage (AICC) takes an acceptance predicate for a table
and produces test requirements by considering each integrity constraint predicate in
turn as the major integrity constraint predicate and the remaining integrity constraint
predicates as the minor predicates such that the major integrity constraint predicate de-
termines the top-level acceptance predicate. The major predicate is manipulated such
that its truth value is changed from true to false. Since acceptance predicates are
conjunctions, minor integrity constraint predicates need to evaluate to true so that
the major integrity constraint predicate determines the top-level acceptance predicate.
That is, the effect of the integrity constraint is isolated with respect to the acceptance
predicate.

Criterion 3 (Active Integrity Constraint Coverage (AICC)). For each table tbl of
s, let ap be the acceptance predicate and ICP the integrity constraint predicates
involved in ap. Take each integrity constraint predicate icpi ∈ ICP as the major
integrity constraint predicate, ensuring that each remaining minor integrity constraint
predicate icp j ∈ ICP, j 	= i evaluates to true so that icpi determines ap. TR contains
the following requirements: icpi evaluates to true, and icpi evaluates to false, causing
ap to also evaluate as true and false, respectively.

Recall the concept of IC-Minimality from Section 3.4. Non IC-minimal schemas result
in infeasible test requirements with AICC. For instance, with the cookies table, it
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Fig. 8. AICC test requirements and example test INSERT statements for the cookies table of Figure 1. (We
assume the use of HyperSQL/PostgreSQL, so icp2 is ignored so that the table is IC-minimal.)

impossible to evaluate the NOT NULL integrity constraint predicate icp2 to false (thus
requiring id to be NULL), while simultaneously evaluating the PRIMARY KEY constraint
icp1 to true thus mandating a non-NULL value for id. Similarly, for a pair of duplicated
constraints, one of the constraints cannot be false while the other, identical, constraint
is true.

AICC subsumes both APC and ICC for IC-minimal schemas: As part of the AICC
criterion, ap for each table takes on true and false evaluations, and each integrity
constraint predicate is also evaluated as true and false. For non-IC-minimal schemas,
AICC only “weakly” subsumes APC and ICC, since although the set of test requirements
for AICC is essentially a superset of those for APC and ICC, some of the requirements
for AICC can be shown to be infeasible for which the equivalent requirements with APC
and ICC will not. Therefore, since it is generally undecidable if a test requirement is
infeasible [Ammann and Offutt 2008; Zhu et al. 1997], we contend that it is preferable
to establish an IC-minimal version of the schema before testing it, a practice that we
follow for the experiments of Section 5.

In Figure 8(a), we demonstrate the generation of the test requirements for the IC-
minimal version of the cookies table of Figure 1 (i.e., with the NOT NULL constraint
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on the id column, icf2, removed). Twelve test requirements are generated, yet five
requirements are duplicates of the first requirement, where ap is satisfied and an
INSERT is made successfully into the table; this leaves seven distinct requirements. In
Figure 8(b), we show example values that might be used in the INSERT statements that
form the test cases for satisfying each requirement.

AICC is based on inducing one of two truth values for each integrity constraint pred-
icate, and as such, the tests may not fully exercise the null and constraint conditions
embedded within them. This potentially leads to a superficial test suite. For example,
the PRIMARY KEY constraint is never exercised with a NULL value by the concrete tests
of Figure 8, leaving untested the scenario when the null condition is false. In many
cases, the true evaluation of an integrity constraint predicate is delivered through the
selection of NULL values, (i.e., exercising the null condition as true), but not testing
satisfaction of the constraint condition. As such, for instance, the expression of the
CHECK constraint expiry = 0 OR expiry > last accessed is never actually exercised
as true by any of the test cases.

The next coverage criterion aims to address this deficiency by mandating
that null and constraint conditions are fully exercised with both true and false
evaluations.

Criterion 4 (Condition-Based Active Integrity Constraint Coverage (CondAICC)). For
each table tbl of s, let ap be the acceptance predicate and ICP the integrity con-
straint predicates involved in ap. Take each integrity constraint predicate icpi ∈ ICP
as the major integrity constraint predicate, ensuring that each remaining minor in-
tegrity constraint predicate icp j ∈ ICP, j 	= i evaluates to true, so that icpi determines
ap.

For each icpi, the null condition and constraint condition take turns to become the
major condition condmaj with the remaining condition condmin evaluating to a truth
value such that the condmaj determines icpi. TR contains the following requirements:
condmaj evaluates to true, and condmaj evaluates to false. As the truth value of condmaj
flips, the truth values of icpi and ap also flip.

CondAICC begins in the same way as AICC, isolating the effect of the integrity
constraint predicate on the acceptance predicate. It then goes a step further, isolating
and testing the consequences of changing the truth value of the null condition and the
constraint condition embedded in the major integrity constraint predicate.

Figure 9 shows the test requirements that would be created for the IC-minimal
version of the cookies table. The table shows how, during the derivation of the test
requirements, constraint conditions can potentially evaluate to unknown. This is due
to the presence of NULLs. The null condition always ensures, however, that the overall
integrity constraint predicate, and consequently the acceptance predicate as well, can
only ever be two-valued.

Since integrity constraint predicates for PRIMARY KEYs are conjunctions, the con-
straint condition must be “not-false” (i.e., true or unknown) when the null condition is
the major condition, as shown in requirements 1 and 2. In practice, the choice of truth
values is fixed. When the null condition is true such that no columns are NULL and thus
the constraint condition cannot be unknown, then it can only be true in order for the
null condition to determine the integrity constraint predicate. Conversely, when the
null condition is false, columns must be NULL, so the constraint condition necessarily
evaluates to unknown. When the constraint condition is the major condition, the null
condition must always evaluate to true for the constraint condition to determine the in-
tegrity constraint predicate, as evident in requirements 3 and 4. NOT NULL constraints
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Fig. 9. CondAICC test requirements for the cookies table of Figure 1. Each column corresponds to an
integrity constraint predicate, defined in Figure 6, with the acceptance predicate ap forming the rightmost
column. Above each integrity constraint predicate are details of the original constraint—its type, line number
in Figure 1 in brackets, and affected columns. Each row forms a test requirement, showing the required truth
values for each integrity constraint predicate. Shaded cells indicate the major predicate and condition for
that particular test requirement. (We assume the use of HyperSQL/PostgreSQL, so icp2 is ignored and thus
the table is IC-minimal.) Requirements 3, 5, 10, 14, 18, and 22 are duplicates, resulting in 16 distinct test
requirements overall.

have no null condition, and thus the derivation of requirements here is identical to
AICC.

For all other constraints, the integrity constraint predicate is a disjunction of the
null condition and the constraint condition. Thus the constraint condition must be
“not-true” (i.e., false or unknown) for the null condition, as the major condition, to de-
termine the integrity constraint predicate. Again, the truth value of the null condition
necessarily decides the truth value of the constraint condition. When the null condition
is true, columns are NULL, so the constraint condition must be unknown. When the null
condition is false, the constraint condition must also be false. When the constraint
condition is the major condition, the null condition must evaluate to false. While 21
requirements are produced, there are duplicates: Requirements 3 and 5 are duplicates
of requirement 1. Requirement 10 is a duplicate of 8, 14 is a duplicate of 12, 18 a
duplicate of 16, and 22 a duplicate of 20. Following the removal of duplicates there are
16 test requirements overall.

CondAICC subsumes AICC, since, for each integrity constraint ic, the process of
ensuring each condition evaluates to true and false causes the integrity constraint
predicate to evaluate to true and false.

Null and constraint conditions are themselves made up of individual clauses.
For example, the first CHECK constraint for the cookies table (line 12 of Figure 1),
nr(expiry) = 0 ∨ nr(expiry) > nr(last accessed) is made up of two disjuncts. While
CondAICC involves more stringent test requirements than AICC, it considers only
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truth evaluations of overall conditions, rather than their individual clauses. The follow-
ing coverage criterion, clause-based active integrity constraint coverage (ClauseAICC),
expands testing to the clauses of each condition.

Criterion 5 (Clause-Based Active Integrity Constraint Coverage (ClauseAICC)). For
each table tbl of s, let ap be the acceptance predicate and ICP the integrity constraint
predicates involved in ap. Take each integrity constraint predicate ic fi ∈ ICF as the
major integrity constraint predicate, ensuring that each remaining minor integrity
constraint predicate icp j ∈ ICP, j 	= i evaluates to true, so that icpi determines ap.

Let C be the set of atomic clauses of icpi, that is, the subexpressions of icpi joined
through the logical connectives ∧ and ∨. Take each ck ∈ C as the major clause and
ensure truth values for each remaining minor clause cl ∈ C such that ck determines ip.
TR contains requirements such that each major clause ck evaluates to true and false.
As ck changes truth value from true to false, icpi also changes truth value along with ap.

Similar to the simpler active coverage criteria defined in this section, ClauseAICC
first ensures an integrity constraint predicate determines the overall acceptance pred-
icate. The secondary step then involves taking the major integrity constraint predicate
and making each of its clauses the focus of an individual test. Using concrete examples,
we now describe in detail how this process works for each type of constraint.
UNIQUE Constraints. The process of generating test requirements for UNIQUE con-

straints has the effect of producing tests that explicitly check (1) what happens when
each individual column is NULL, and (2) what happens when each column is individu-
ally unique. The second aspect effectively tests the inclusion of each individual column
in the constraint and for potential errors when forming the constraint from several
columns.

As an example of how test requirements are derived, take the UNIQUE constraint on
line 19 of Figure 1, for which the integrity constraint predicate is:

nr(name) = ⊥ ∨ nr(host) = ⊥ ∨ nr(path) = ⊥ ∨
∀er ∈ cookies : nr(name) 	= er(name) ∨ nr(host) 	= er(host) ∨ nr(path) 	= er(path).

Figure 10(a) shows the test requirements that would be generated. Due to the poten-
tial involvement of NULL values, clauses of the constraint condition are three-valued
and may evaluate to unknown. Since the intermediate predicate is a disjunction, minor
clauses need to be not-true, that is, false or unknown, for the major clause to determine
the predicate. In practice, there is no choice with respect to constraint condition truth
values, which are necessarily fixed as false or unknown by the earlier null condition
clauses.

Test requirements 1, 3, and 5 ensure that each column of the constraint is indepen-
dently tested with NULL. For test requirements 7, 9, and 11, each column takes the
turn of being unique with respect to values already in cookies, whereas values for the
other columns are non-unique. This helps the tester make individual decisions about
whether the column should be included in a UNIQUE constraint. If the value should not
be capable of making a row uniquely-identifiable on its own, it should not be part of
the constraint. Test 2 ensures that the testing of the overall acceptance predicate will
set it to false, checking what happens when the key values clash with values already
present in a row of the database table.
PRIMARY KEY Constraints. In a similar fashion to UNIQUE constraints, ClauseAICC

for primary keys tests what happens when each column involved is NULL, and what
happens when each column is individually unique. For primary keys, however, NULL
should be rejected. The PRIMARY KEY defined on the cookies table is made up of a
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Fig. 10. Dissecting test requirements for ClauseAICC for the cookies table.

single column. For single column PRIMARY KEY constraints, UNIQUE constraints and
FOREIGN KEY constraints the test requirements created for ClauseAICC are identical
to CondAICC. For instance, with the cookies table, the primary key has the integrity
constraint predicate nr(id) 	= ⊥ ∧ (∀er ∈ cookies : nr(id) 	= er(id)), or, in other words,
a conjunction of the null condition and the constraint condition so that the major clause
determines the predicate, minor clauses need to be not-true (i.e., false or unknown).
Because each condition is made up of a single clause, in following the ClauseAICC
procedure, we effectively end up with the same tests as with CondAICC.
FOREIGN KEY Constraints. ClauseAICC for foreign keys has the effect of testing (1)

each column involved in the FOREIGN KEY as NULL, and (2) for its correct inclusion in the
key. Following the cookies example, the integrity constraint predicate of the FOREIGN
KEY is

(nr(host) = ⊥ ∨ nr(path) = ⊥) ∨
(∃er ∈ places : nr(host) = er(host) ∧ nr(path) = er(path)).

Figure 10 (b) shows the derivation of the test requirements. Since it is a disjunc-
tion composed of a further disjunction (the null condition) and a conjunction (the
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constraint condition), the predicate has a more complex structure than those previously
considered. The two disjuncts at the top level need to be not-true for the lower-level
major clauses to determine the predicate. In the null condition disjunct, minor clauses
then need to be not-true. In the constraint condition conjunct, at most one minor clause
can be true, the other (or both) not-true.

In test requirements 1–4, one of the null condition clauses is the major clause. Since
tests 2 and 4 are subsumed by later test requirements, the process leaves tests 1
and 3, which test that the host and path columns are individually NULL. In tests 5–8,
the constraint condition clauses take the turn of being the major clause. Clause 7 is a
duplicate of 5, so the process leaves three distinct tests in which the foreign key column
matches a row in the referenced table (requirement 5), host does not match but path
does (requirement 6), and host matches but path does not. The latter two tests check
for correct inclusion of the foreign key columns in the key.
CHECK Constraints. CHECK constraints with multiple clauses lead to further test re-

quirements with ClauseAICC. The integrity constraint predicate for the CHECK con-
straint on line 21 in Figure 1 is as follows:

((nr(expiry) = 0 ∨ nr(expiry) > nr(last accessed)) = unknown) ∨
((nr(expiry) = 0 ∨ nr(expiry) > nr(last accessed)) = true).

Essentially, an unknown or true evaluation of the CHECK expression leads to the
constraint being satisfied. In the previously stated predicate, the evaluation of the two
disjuncts to a specific truth value effectively converts clauses in three-valued logic to a
two-valued logic.

Figure 10(c) shows the derivation of test requirements according to ClauseAICC in
which each of the two original CHECK clause takes the turn of being unknown, true or
false. One test requirement (number 1), however, is infeasible. For nr(expiry) = 0 to
evaluate to unknown, expirymust be NULL, which automatically results in nr(expiry) >
nr(last accessed) evaluating to unknown rather than false, as required.
NOT NULL Constraints. Test requirements with NOT NULL constraints are identical for

ClauseAICC and CondAICC, since NOT NULL constraint expressions can only consist of
one clause.

3.8. Column Coverage Criteria

The previously-described constraint coverage criteria test the logic of existing integrity
constraints specified in the schema. They do not test, however, for integrity constraints
that may have been omitted from the schema definition: For instance, a “usernames”
column not being declared UNIQUE or a “surname” column not being declared as NOT
NULL. The following criteria set out to test for such missing constraints by testing each
column of each table of the schema. Unique column coverage (UCC) tests each column
with unique and non-unique values, while null column coverage (NCC) tests columns
with NULL and not-NULL values.

Criterion 6 (Unique Column Coverage (UCC)). For each table tbl of a schema s, let
CL be the set of columns. Let nr be a new row to be inserted into tbl. For each cl ∈ CL,
let ucl ← ∀er ∈ tbl : nr(cl) 	= er(cl). TR contains two requirements for each cl, one in
which ucl = true ∧ nr(cl) 	= ⊥, and one where ucl = false ∧ nr(cl) 	= ⊥.

Criterion 7 (Null Column Coverage (NCC)). For each table tbl of a schema s, let CL
be the set of columns. Let nr be a new row to be inserted into tbl. For each cl ∈ CL, let
nncl ← nr(cl) 	= ⊥. TR contains two requirements for each cl, one in which nncl = true,
and one where nncl = false.
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Note that UCC demands tests for truly-unique values by ensuring the column value
cannot be set to NULL. While UCC demands each column is not-NULL, it does not subsume
NCC, since it does not mandate each column should be individually NULL also. Yet, these
simple criteria lead to the same kind of problems as ICC in that the columns are tested
independently of the rest of the integrity constraints. An INSERT statement for an ICC
test requirement is likely to be rejected on the basis that one or more of the integrity
constraints of the target table are not satisfied. This makes the cause of any potential
fault hard to discern, since rejection of the statement could have been for a number of
reasons related to particular integrity constraints. We therefore present active versions
of each criteria which involve respecting the integrity constraints on the table while
alternating the unique/not-unique and NULL/not-NULL status of each column, with active
unique column coverage (AUCC) and active null column coverage (ANCC), respectively,
defined in the following fashion.

Criterion 8 (Active Unique Column Coverage (AUCC)). For each table of a
schema s, let tbl be the current table under consideration and CL be tbl’s set of
columns. For each cl ∈ CL, let nr be a new row to be inserted into tbl, and let
ucl ← ∀er ∈ tbl : nr(cl) 	= er(cl). Let apaucc be the acceptance predicate for tbl that
does not account for integrity constraints that require cl to be individually unique
(i.e., UNIQUE constraints and PRIMARY KEY constraints defined on cl). TR contains two
requirements for each cl: one in which ucl = true ∧ nr(cl) 	= ⊥ ∧ apaucc = true, and one
where ucl = false ∧ nr(cl) 	= ⊥ ∧ apaucc = true.

Criterion 9 (Active Null Column Coverage (ANCC)). For each table of a schema s, let
tbl be the current table under consideration and CL be tbl’s set of columns. For each
cl ∈ CL, let nr be a new row to be inserted into tbl, and let ancl ← nr(cl) = ⊥. Let apancc
be the acceptance predicate for tbl that does not account for integrity constraints that
require cl to be individually NULL (i.e., a NOT NULL constraint on cl; or a PRIMARY KEY
constraint defined for cl only, in the case of a non-SQLite database). TR contains two
requirements for each cl: one in which ancl = true ∧ apancc = true, and one where
ancl = false ∧ apancc = true.

Note that the active criteria exclude certain existing integrity constraints that are
defined on the current column of interest, that is, NOT NULL constraints for ANCC and
single-column UNIQUE constraints for AUCC. This is so that the column can be properly
tested as needed: If a NOT NULL constraint exists on some column cl that must be
respected, the test requirement involving making cl NULL would be infeasible. Likewise
for AUCC, for the current column of interest cl, single column PRIMARY KEY constraints
or UNIQUE constraints defined on that column are ignored. (Note that multicolumn
PRIMARY KEY constraints or UNIQUE constraints involving cl do not need to be ignored, as
cl can be independently unique/non-unique, even in the presence of those constraints.)
Notice further that AUCC and ANCC do not subsume APC. While the respective criteria
guarantee the inclusion of a test requirement involving a row of data being accepted
into each table of the schema, there is no reverse guarantee that a test requirement
will involve a new row of data being rejected. Of course, this is unless the table has
UNIQUE or PRIMARY KEY constraints, in the case of AUCC, and NOT NULL constraints in
the case of ANCC—but the presence of such integrity constraints cannot be guaranteed
for every database table.

In general, the number of test requirements generated for column coverage crite-
ria is twice the number of columns in the tables of the schema-under-test. However,
for ANCC, duplicate test requirements may be created when a table has more than
one NOT NULL constraint defined for it. This is because mandating a column cl be
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Fig. 11. The coverage criteria subsumption hierarchy for testing relational database schemas.

not-NULL (as demanded by the criterion) is the same as cl having an actual NOT NULL
constraint defined on it. Suppose a table tbl has two columns cl1 and cl2 with NOT NULL
constraints defined on them. ANCC will generate a test requirement where cl1 should be
not-NULL, while cl2 should already be not-NULL because of its NOT NULL constraint. This
is identical to the test requirement for when cl2 is mandated to be not-NULL while cl1
must be not-NULL because of its integrity constraint.

There is no similar situation with AUCC, because mandating that a column be
unique (as demanded by the criterion) is not the same as the column having a UNIQUE
constraint defined on it, because a UNIQUE constraint can be satisfied by a NULL value or
a unique value (i.e., the integrity constraint predicate also involves the null condition,
in addition to the constraint condition that specifies uniqueness). For two columns
cl1 and cl2 involved in two UNIQUE constraints, the test requirement that cl1 must be
unique cannot be satisfied by a NULL value, whereas the UNIQUE constraint defined for
cl2 means that the value generated for cl2 can be unique or NULL. This test requirement,
therefore, is not identical to the reverse case where cl1 may be NULL or unique, while
cl2 must be unique.

3.9. Summary

In this section, we have defined different coverage criteria for database schemas, which
can be organized into three different subsumption hierarchies, as shown in Figure 11.
In essence, there are two flavors of criteria: constraint coverage criteria, comprising
ICC up to ClauseAICC (the leftmost subsumption hierarchy in the figure) and col-
umn coverage criteria, consisting of the unique-column coverage criteria, UCC and
AUCC (the middle subsumption hierarchy); and the null-column coverage criteria,
NCC and ANCC (the rightmost subsumption hierarchy). APC does not consider spe-
cific constraints and as such is not formally a part of the constraint coverage tree,
although criteria from AICC upwards subsume it. Intuitively, the criteria at the top of
the subsumption hierarchy in Figure 11 are “stronger” than those at the bottom, thus
indicating that, for instance, a test suite satisfying ClauseAICC will also satisfy all of
the criteria below it in the hierarchy.

4. AUTOMATIC TEST CASE GENERATION

In this section, we describe a framework that is capable of taking a test requirement,
created by one of the coverage criteria introduced in the last section, and turning it into
a concrete test case. These concrete generated test cases may then be used with a real
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database that instantiates the schema under test while being managed by a specific
DBMS.

The coverage criteria in the last section describe test requirements that formulate
predicates for testing integrity constraints and acceptance predicates in which a new
row of data nr is to be inserted into some table tbl of a database. This section describes
how the data in nr is generated. Furthermore, recall that data may already be needed
in the database before nr is inserted in order to ensure the database is in a T-sufficient
state, as per Definition 3.4. This is so that the test does not trivially “pass” with any
values for nr, or the test is infeasible from the outset. Our framework handles the prob-
lem of T-sufficiency by generating test cases under the assumption that the database is
empty (or can be emptied [Haftmann et al. 2007]) and that the test case itself is respon-
sible for putting the database into the required T-sufficient state, before the attempted
insertion of nr. This also ensures that test cases can be executed independently and in
isolation of other tests.

A test case, therefore, consists of a sequence of SQL INSERT statements.

Definition 4.1 (Test Case). A test case tc is a sequence of INSERT statements
〈I0 . . . Itl〉 designed to fulfill some test requirement tr. The “length” of the test case,
denoted tl, is the number of INSERT statements that tc contains, subject to the restric-
tion that tl > 0.

The initial subsequence of INSERTs, up to but not including the final INSERT state-
ment, are responsible for putting an empty database into the T-sufficient state required
for the test. We refer to this initial subsequence as the presequence, as explained in the
following definition.

Definition 4.2 (Presequence of a Test Case). The presequence of a test case tc is the
series of INSERT statements 〈I0 . . . Itl−1〉 that put the database in the required T-
sufficient state so that the test requirement tr can be fulfilled. All INSERT statements
in the presequence of a test case should be accepted by the underlying DBMS for which
tc is generated.

As the definition states, since the presequence is intended to modify the state of
the database in order to ensure T-sufficiency, each of its INSERT statement should be
accepted by the DBMS. That is, the data contained in each statement must be generated
such that it conforms to the acceptance predicate of the table concerned, thus allowing
the data to become part of the database.

The final INSERT statement, involving the new row of data nr, may be accepted or
rejected by the DBMS, depending on the test requirement. We therefore refer to it as
the decisive INSERT of the test case.

Definition 4.3 (Decisive INSERT Statement of a Test Case). The decisive INSERT of a
test case tc is the last INSERT statement Itl of a test case that involves the new row of
data nr to be submitted to the DBMS in order to fulfill the test requirement tr on which
tc is based. Itl may be accepted or rejected by the DBMS, depending on the nature of tr.

The first step in generating test cases is establishing the actual sequence of INSERT
statements that is required and the tables into which they need to insert data. At this
point, the data values of each INSERT are said to be “blank”. It is the responsibility
of the second step of the test case generation process to then fill in those blanks with
appropriate data values that fulfill the test requirement. The following two sections
detail these two steps.
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4.1. Step 1 – Determining the Necessary Sequence of INSERT Statements

Step 1 of the test case generation algorithm is itself subdivided into two phases. The
first phase establishes a skeleton presequence of INSERTs needed for T-sufficiency. The
second phase then modifies the presequence to ensure that all foreign key relationships
in the schema are accounted for so that INSERTs in the test do not violate any FOREIGN
KEY constraints and thus lead to rejection by the DBMS no matter what data they
contain.

Phase 1. Skeleton Test Case. The first steps towards establishing T-sufficiency in the
presequence depends on what the test requirement is testing.

—For CHECK constraints and test requirements that involve making columns NULL/not-
NULL (e.g., for NCC and ANCC), an empty database is already T-sufficient, so no
presequence of INSERTs is required in the test case.

—For uniqueness constraints and test requirements that involve making columns
unique/not-unique (i.e., for UCC and AICC), an empty database is not T-sufficient,
since any value(s) for the column(s) that need to be unique will also be trivially ac-
cepted. Therefore, an INSERT statement for tbl must be added to the presequence so
that the decisive INSERT may be potentially accepted or rejected, based on the data
values contained within the two respective INSERTs (i.e., a comparison row of data in
the presequence INSERT and the values of nr in the decisive INSERT).

—For FOREIGN KEY constraints, an empty database is not T-sufficient. Since there is no
data in the database for the decisive INSERT to potentially reference, it will always
be rejected by default. Thus the presequence needs to have an INSERT to the table
referenced by the FOREIGN KEY so that the decisive INSERTmay potentially be accepted
or rejected, based on the data values contained within the two respective INSERTs.

Example. As part of the ClauseAICC criterion the UNIQUE constraint on line 19 for
the Cookies example of Figure 1 is tested, involving the name, host, and path columns.
One test requirement involves all name and host being non-unique and path unique
(i.e., requirement 11 of Figure 10(a)). The test case therefore requires an INSERT to
the cookies table (i.e., the decisive INSERT statement). Assuming all other integrity
constraints are satisfied, this INSERT will be trivially accepted by the DBMS, no matter
what the values in the INSERT statement are for name, host, and path. Therefore, a prior
INSERT is required to the cookies table to establish T-sufficiency. This statement forms
the initial presequence. Accordingly, the skeleton test case established as a result of
Phase 1 is one that contains two INSERT statements, where both INSERTs are for the
cookies table as shown in the following. The decisive INSERT is denoted D and the
initial presequence INSERT statement is called PA.

PA INSERT INTO cookies VALUES(...)

D INSERT INTO cookies VALUES(...)

Phase 2. Satisfying Foreign Key Relationships. Whatever the test requirement, fol-
lowing the first phase, the test case will consist of at most two INSERT statements. The
subject tables of these INSERTs may involve foreign key relationships that also need to
be satisfied by the presequence of the test case; otherwise, the FOREIGN KEY constraints
concerned will be violated and one or more INSERTs of the test case will always be
rejected, regardless of the purpose of the original test requirement. With the example
presented for Phase 1, for instance, the cookies table has a foreign key relationship
with the places table. If the values for host and path inserted into the cookies table
do not already appear in the places table, then both of those INSERT statements will
fail.
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In order to ensure all foreign key relationships are satisfied as part of the test case,
additional INSERTs need to be injected into the presequence. These INSERTs ensure that
data is in the database for reference by later INSERTs that might depend on them,
thus preventing FOREIGN KEY violations. The algorithm for ensuring that this is the
case takes each existing INSERT in the test case in turn. Let tbltarget be the table of
an INSERT statement in the test case currently under consideration. The foreign key
structure of the schema is explored, starting with tbltarget and analyzing tables directly
and transitively linked to it through FOREIGN KEY constraints, in a depth-first fashion.
Each new table encountered in the exploration process results in the injection of a
new INSERT statement for that table into the presequence, either directly before the
last injection (if one has been made) or before the existing INSERT from which the
analysis began. A limitation of this process is that it cannot handle cyclic foreign key
relationships between tables. If such a cycle is detected, the algorithm terminates
in failure. Our test case generation algorithm cannot handle such schemas unless
constraint enforcement is switched off in the DBMS. This, however, defeats the purpose
of our technique. Ideally, the cyclic dependency—a hallmark of a schema that may be
poorly designed—needs to be broken or otherwise reviewed and refactored [Tay et al.
2013]. As mentioned in Section 7, the complete handling of cyclic dependencies during
test generation is an area for future work; with that said, it is important to note that
our current approach works correctly for the 32 schemas used in the empirical study.

A fresh INSERT statement will not be injected into the presequence if an INSERT for
that table already appears at some prior point in the sequence. Multiple INSERTs to the
same table are not generally needed to satisfy foreign key relationships, since one row
in the foreign key table may be referenced by multiple rows in one or more other tables.
There is one exception to this rule, however. This is when a uniqueness constraint or
property in tbl is being tested, and the columns involved are also part of a FOREIGN KEY
constraint for tbl. Since the column values involved may need to be unique over two
rows (nr and the comparison row in the presequence added in Phase 1), the referenced
values will also need to be unique, mandating two rows to the referenced table rather
than just one.

Example. Moving forward with the example presented for Phase 1, the algorithm en-
counters the first INSERT, PA. This has a FOREIGN KEY constraint referencing the places
table. An INSERT to places, denoted PB, is injected into the presequence before PA.

PB INSERT INTO places VALUES(...)

PA INSERT INTO cookies VALUES(...)

D INSERT INTO cookies VALUES(...)

The places table has no FOREIGN KEY constraints defined for it, so no prior INSERTs
need to be injected for further tables. The algorithm moves to the statement D, also
directed towards the cookies table, with the FOREIGN KEY constraint to places. The
presequence already contains an INSERT to places; however, this single INSERT in the
presequence is insufficient. There is no way to have two different values for path in
two INSERTs to cookies—to test path as unique, as per the original test requirement—
without two rows in the places table with each of these two values. Therefore, the test
must perform another INSERT on the places table, which is injected before D. The final
test case therefore consists of four INSERTs, as follows.

PB INSERT INTO places VALUES(...)

PA INSERT INTO cookies VALUES(...)

PC INSERT INTO places VALUES(...)

D INSERT INTO cookies VALUES(...)
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Table I. Generic Column Types Used in Test Data Generation, with Example Mappings to Real DBMS Types

Universal General Default Initial Examples of

Type Type Value Range DBMS Types

Boolean Atomic False False, True BOOLEAN

DateTime (Fixed) Compound 2000/1/1 00:00:00 1990/1/1 00:00:00–2020/1/1
23:59:59

DATETIME

Date (Fixed) Compound 2000/1/1 1990/1/1–2020/1/1 DATE

Numeric Atomic 0 -1000–1000 DECIMAL, DOUBLE, FLOAT,

(to some number of decimal
places)

INTEGER, NUMERIC, REAL . . .

String (Flexible) Compound Empty string characters: ‘a’–‘Z’, string
length 0–10

CHAR, VARCHAR, TEXT . . .

Timestamp Atomic 0 631152000–1577836800 TIMESTAMP

(equivalent to 1990/1/1
00:00:00–

2020/1/1 23:59:59)

Time (Fixed) Compound 00:00:00 00:00:00–23:59:59 TIME

4.2. Step 2 – Generation of Test Data Values for the INSERT Statements

Once the blank series of INSERT statements making up a test case has been determined,
data values need to be generated. In the running example, the following data values
would satisfy the test requirement (i.e., unique values for path in PA and D, non-
unique values for name and host, and with foreign key relationships satisfied such that
the prior INSERTs to places contain data values referenced by later statements).

PB INSERT INTO places(host, path, ...) VALUES(‘b’, ‘1’, ...)

PA INSERT INTO cookies(..., name, host, path, ...) VALUES(..., ‘a’, ‘b’, ‘1’, ...)

PC INSERT INTO places(host, path, ...) VALUES(‘b’, ‘2’, ...)

D INSERT INTO cookies(..., name, host, path, ...) VALUES(..., ‘a’, ‘b’, ‘2’, ...)

We present two algorithms for generating data values. First, however, we discuss
how we handle the plethora of data types that a column can have, describing a solution
that supports types in different real-world DBMSs.

4.2.1. Generating Test Values for Different Column Types. Since each DBMS has its own
diverse set of column types, we develop an abstraction so that our techniques can map
a specific DBMS column type to one of seven “universal” types. Each universal type is
capable of encoding key concrete DBMS-specific properties, for example, a particular
range of values for an integer type. We list each of the universal types, along with
example mappings, in Table I.

We further distill the seven universal types into two more general types: atomic
types and compound types. Atomic types are decimal numbers, with some specified
minimum and maximum value, and a number of decimal places. For example, values
of the “Boolean” type are either true or false; while values of the “Timestamp” type are
integers. Values of an atomic type are encoded as decimal numbers. Compound types
are formed from values of an atomic type joined together. Whether the type contains
a definite number of values depends on whether the type is classed as fixed or flexible.
The “Date” type is an example of a fixed compound type; consisting of three integers
representing day, month, and year values. The “String” type is a flexible compound
type, consisting of a variable number of characters, represented by values. During the
search, strings can shrink and grow in length (up to a predetermined maximum) by
having characters added to or removed from the end of the sequence.
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4.2.2. Formulating the Goal Predicate. In order to establish when suitable test values
have been found, the test generation approach formulates a “goal predicate” for each
INSERT statement of the test case. For every INSERT statement of the presequence, the
goal predicate is simply formed from the acceptance predicate of the table to which the
INSERT is to be made. Recall the acceptance predicate is created from the conjunction
of integrity constraint predicates, which are conditions over a new row of data nr to
be inserted into the database, and each existing row er already in the database. The
goal predicate for presequence INSERTs is therefore assessed on the basis of the data
in the statement itself (i.e., nr), and each row of data er in the INSERTs to the relevant
tables before it. Additionally, the goal predicate for the presequence INSERTs makes the
further stipulation that each data value is not-NULL. The absence of NULL values in the
database is important for guaranteeing T-sufficiency, particularly in regards to testing
UNIQUE and FOREIGN KEY constraints, which cannot be negated if the database state
consists entirely of NULL values.

Given a means of representing data values in INSERT statements and a predicate that
the data values must satisfy, the next two sections describe two algorithms for finding
those values. We apply a search-based test data generation approach [McMinn 2004]
following the advice of Clark et al. [2003] to apply local search to the problem first and
then compare it to random search. We begin by introducing the random approach and
then explain the local search approach that is based on Korel’s alternating variable
method (AVM) for test data generation [Korel 1990]. While more complex methods
(e.g., genetic algorithms [McMinn 2004]) may be applicable to the task of generating
data for the INSERT statements (and may even work better), we leave this for future
research, as discussed in Section 7.

4.3. The Random+ Method

Our implementation of the random data generation of values involves selecting values
at random for each value of each INSERT. The column type is found for the value
and mapped to one of the types listed in Table I. A value is then selected from the
type’s range. With a probability of pnull, NULL is used instead. With a probability of
plib, a value appropriate to the column’s type is selected from a special “library” of
values. This library is generated through mining the schema for constants found in
any CHECK constraints it may have. Such constants appear, for example, on one side of
an inequality or in a list of values used with an IN operator. Mining is performing by
parsing the SQL CREATE TABLE statements used to construct the schema, extracting
constants from the parse tree and inserting them into the library for later use by the
random data generator.

Once all values have been selected, the test case is checked against the test re-
quirement, using the goal predicate. If the requirement is fulfilled, then the process
terminates with the test case, else random selection repeats.

We refer to this method as Random+, because the library of values enhances it over a
pure random technique and helps it satisfy test requirements involving arbitrary CHECK
constraints more easily. However, finding certain data values through random search
is still problematic for some types of test requirements. A more directed approach is
needed, which is why we also developed the search-based technique that we describe
in the next section.

4.4. The AVM (Alternating Variable Method)

Search-based data generators explore the domain of variables for appropriate test
values [McMinn 2004]. Instead of being either exhaustive or completely random, the
search is heuristic, using a fitness function to guide it to the required values. In the
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Fig. 12. Encoding a test case, involving the insertion of two rows of data, into the representation used by
the search. The INSERT statements to the left of the figure are annotated with indexes next to each data
value, which map into the sequence of “cells” used by the search.

remainder of this section, we explain the AVM’s representation, fitness function, and
search strategy.

Representation. In order to apply search-based techniques, we need to encode actual
solutions in the problem context (i.e., the initially blank values of the INSERT statements
that form the test case) to some lower-level data structure that a search technique can
utilize, which we call the problem representation. In this structure, the values for every
INSERT that needs to be generated are mapped to a linear sequence, where each entry
in the sequence corresponds to a particular column value of an INSERT. We refer to each
entry of the sequence as a cell.

A cell can either be NULL or encode an actual data value. Values are encoded by
mapping the column’s original data type to one of the types listed in Table I. Atomic
values are encoded with a single decimal number (e.g., 0 for false and 1 for true for a
Boolean type) or a sequence of decimal values in the case of a compound type. Figure 12
shows how the values of two INSERT statements are encoded using our representation.
Integer values map directly to the values used in the list, while Strings appear as
sequences of ASCII numbers.

Fitness Function. The process of forming a fitness function involves reformulation of
a goal predicate into a distance function, which indicates “how far away” the existing
test data values are from those that are needed for the data values appearing in the
INSERT statements of the test case. Our distance functions are inspired by those used
in structural testing [McMinn 2004], where if, for example, a predicate “a == b” needs
to be evaluated as true, the function |a− b| is applied. Values of a and b that are closer
together receive smaller distance values. Our atomic distance metrics, for comparing
two data values (in potentially different INSERT statements), follow the same pattern.
We extend these to compare atomic types with compound types and NULL values.

Figure 13 gives our distance functions. In addition to conjunctions and disjunctions,
the and dist and or dist are used for handling universal and existential quantifiers,
respectively. Each individual clause involves the comparison of two entities a and b,
handled by value dist. Depending on the types of a and b, and whether either is NULL,
further calls may be required to compare atomic types using atomic dist or compound
types with compound dist. In order to ensure that no one part of the goal predicate
dominates the others in terms of the “proportion” of the final fitness value, distance
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Fig. 13. Distance functions for the formation of complete fitness functions.

values are normalized in the range [0,1] using Arcuri’s function norm(d) = d
d+1 [Arcuri

2010].
For instance, consider Figure 12’s example involving the insertion of rows into the

places and cookies tables of the BrowserCookies example and the respective encoding
of values. The goal predicate is the conjunction of the acceptance predicate for places
and cookies. For ease of understanding, we limit our focus to one conjunct of the goal
predicate—the FOREIGN KEY integrity constraint predicate of the cookies table—which
is as follows:

(nr(host) = ⊥ ∨ nr(path) = ⊥)∧
(∃er ∈ places : nr(host) = er(host) ∧ nr(path) = er(path)).

This predicate can be transformed into a distance function, with references to the
cells of the encoding, as previously described:

and dist(or dist(value dist(cell(12),=, NULL), value dist(cell(13),=, NULL)),
and dist(value dist(cell(1),=, cell(12), value dist(cell(2),=, cell(13))).

Search Using the Alternating Variable Method. We adapt Korel’s alternating variable
method (AVM) [Korel 1990] as the search technique to minimize the fitness function,
with the values of each cell initialized to Table I’s defaults.

The AVM sequentially makes adjustments to each cell in sequence, referred to as
“moves.” After each move, the list of values is evaluated according to the fitness func-
tion. If a move leads to an improvement in fitness, the new adjusted value is kept; else
the value reverts to its previous state. The initial set of moves attempted for a cell are
referred to as “exploratory” moves. The cell first has its NULL status flipped. If, following
this move, the value is not NULL, then further moves are performed depending on the
value’s general type.

If the value is atomic, two moves are attempted, one which decreases the value,
and one that increases the value. If either move is found to improve fitness, a series of
“pattern” moves are made, which accelerate modifications to the value in the direction of
improvement. Pattern move steps are computed using the function stepm = 2m·10−d·dir
[Harman et al. 2010], where stepm is the mth successive move, dir is the direction of
improvement, dir ∈ {−1, 1}, and d is the number of decimal places specified for the
type. Pattern moves continue until a move is made that no longer improves fitness.

If the value is of a compound type, cells are simply treated as subsequences of further
cells; with each element of the subsequence subjected to an exploratory move, followed
by a pattern move in the case of progress. Flexible compound types (i.e., the String type,
as shown by Table I) have additional exploratory moves performed on their length, with
characters added to and removed from their end of their sequences.
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An iteration of the AVM completes when either a fitness of zero has been reached,
indicating that the required data values have been found for the test requirement, or
when a complete cycle of exploratory moves has been made through the entire sequence
of cells without any improvement in fitness. If the latter occurs, the AVM is restarted
but with random values for each value, which are generated as with the Random+
search described in Section 4.3. The whole algorithm terminates in failure if a certain
number of fitness evaluations have been used and the required data values have not
been found.

5. EMPIRICAL STUDY

We designed an empirical study to assess the effectiveness of our coverage criteria,
with the aim of answering the following four research questions.

RQ1: Coverage. How do the number of test requirements generated by the coverage
criteria differ depending on the criterion, the DBMS, and the data generation technique
being used, and how successfully can test cases be automatically generated to satisfy
them?

RQ2: Effectiveness at Finding Faults. How effective are the test suites generated
for each coverage criteria at finding faults? How does fault finding effectiveness vary
depending on the combination of criterion, DBMS, and data generation technique used?

RQ3: Coverage Criteria and Types of Faults. Are certain types of faults more easily
found with certain criteria? If so, what patterns emerge?

RQ4: Combining Criteria and Fault-Finding Effectiveness. Does combining criteria
from different subsumption hierarchies increase fault-finding capability compared to
using individual criterion to derive requirements?

We implement the coverage criteria and data generation techniques discussed here
into a tool called SchemaAnalyst [Kapfhammer et al. 2013; Wright et al. 2013, 2014]
and use it to perform the experiments needed to answer our research questions. This
also necessitated the collection of relational database schema subjects, as discussed in
the next section.

5.1. Subject Relational Database Schemas Studied

As shown in Table II, we gather 32 schemas that contain different types of integrity
constraints of varying levels of complexity, thus making the results of our study as
generalizable as is possible. This set was compiled from a variety of sources, including
databases used in production and in open-source software. Houkjær et al. [2006] note
that real-world complex relational schemas often include features such as composite
keys and multicolumn foreign-key relationships. As such, our set of schemas reflects a
diverse set of features from simple instances of each of the main types of integrity con-
straint (i.e., PRIMARY KEY constraints, FOREIGN KEY constraints, UNIQUE constraints, NOT
NULL constraints, and CHECK constraints) to more complex examples involving many-
column foreign key relationships.

Several schemas were taken from real-world database-driven applications: Cloc
is used as a data repository for a popular open-source application to count
the number of various types of lines in code for a large range of program-
ming languages (http://cloc.sourceforge.net). JWhoisServer is used in an open-
source, Java-based implementation of a server for the internet WHOIS protocol
(http://jwhoisserver.net). Both MozillaExtensions and MozillaPermissions were
extracted from SQLite databases that are a part of the Mozilla Firefox Inter-
net browser. RiskIt is part of system for modeling the risk of insuring individu-
als (http://sourceforge.net/projects/riskitinsurance), adjusting their premium
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Table II. Schemas Used in the Empirical Study

Total CHECK FOREIGN KEY NOT NULL PRIMARY KEY UNIQUE

Schema Tables Columns Constraints Constraints Constraints Constraints Constraints Constraints
ArtistSimilarity 2 3 3(0) 0(0) 2(0) 0 1(0) 0(0)
ArtistTerm 5 7 7(0) 0(0) 4(0) 0 3(0) 0(0)
BankAccount 2 9 8(0) 0(0) 1(0) 5 2(0) 0(0)
BookTown 22 67 28(1) 2(1) 0(0) 15 11(0) 0(0)
BrowserCookies 2 13 10(4) 2(1) 1(1) 4 2(1) 1(1)
Cloc 2 10 0(0) 0(0) 0(0) 0 0(0) 0(0)
CoffeeOrders 5 20 19(0) 0(0) 4(0) 10 5(0) 0(0)
CustomerOrder 7 32 42(1) 1(1) 7(0) 27 7(0) 0(0)
DellStore 8 52 39(0) 0(0) 0(0) 39 0(0) 0(0)
Employee 1 7 4(0) 3(0) 0(0) 0 1(0) 0(0)
Examination 2 21 9(0) 6(0) 1(0) 0 2(0) 0(0)
Flights 2 13 10(4) 1(1) 1(1) 6 2(2) 0(0)
FrenchTowns 3 14 24(1) 0(0) 2(0) 13 0(0) 9(1)
Inventory 1 4 2(0) 0(0) 0(0) 0 1(0) 1(0)
Iso3166 1 3 3(0) 0(0) 0(0) 2 1(0) 0(0)
iTrust 42 309 134(15) 8(8) 1(0) 88 37(7) 0(0)
JWhoisServer 6 49 50(0) 0(0) 0(0) 44 6(0) 0(0)
MozillaExtensions 6 51 7(4) 0(0) 0(0) 0 2(0) 5(4)
MozillaPermissions 1 8 1(0) 0(0) 0(0) 0 1(0) 0(0)
NistDML181 2 7 2(2) 0(0) 1(1) 0 1(1) 0(0)
NistDML182 2 32 2(2) 0(0) 1(1) 0 1(1) 0(0)
NistDML183 2 6 2(2) 0(0) 1(1) 0 0(0) 1(1)
NistWeather 2 9 13(6) 5(5) 1(0) 5 2(1) 0(0)
NistXTS748 1 3 3(0) 1(0) 0(0) 1 0(0) 1(0)
NistXTS749 2 7 7(1) 1(0) 1(0) 3 2(1) 0(0)
Person 1 5 7(1) 1(1) 0(0) 5 1(0) 0(0)
Products 3 9 14(1) 4(0) 2(0) 5 3(1) 0(0)
RiskIt 13 57 36(1) 0(0) 10(0) 15 11(1) 0(0)
StackOverflow 4 43 5(0) 0(0) 0(0) 5 0(0) 0(0)
StudentResidence 2 6 8(0) 3(0) 1(0) 2 2(0) 0(0)
UnixUsage 8 32 24(1) 0(0) 7(0) 10 7(1) 0(0)
Usda 10 67 31(0) 0(0) 0(0) 31 0(0) 0(0)
Total 172 975 554(47) 38(18) 49(5) 335 114(17) 18(7)

Note: Figures in brackets indicate the number of multi-clause constraints that result in additional test
requirements for ClauseAICC compared to CondAICC (i.e., multi-column PRIMARY KEY, FOREIGN KEY and
UNIQUE constraints; and CHECK constraints made up of ANDs, ORs, BETWEENs, or INs).

based on their likelihood of making a claim. StackOverflow is the schema used by a pop-
ular programming question and answer website, as previously studied in a conference
data mining challenge [Bacchelli 2013], while UnixUsage is taken from an application
for monitoring and recording the Unix commands used by a group of students. Some
of these schemas have featured in previous studies of various testing methods (e.g.,
RiskIt and UnixUsage [Pan et al. 2011], and JWhoisServer [Cobb et al. 2011]).

ArtistSimilarity and ArtistTerm are part of the Million Song dataset, a database of
song metadata [Bertin-Mahieux et al. 2011].

The six “Nist” schemas are from the SQL Conformance Test Suite of the National
Institute of Standards and Technology (NIST) (http://www.itl.nist.gov/fipspubs/
fip193.htm) and have been featured in past studies such as as those conducted by
Tuya et al. [2006], while several schemas were taken from the samples for the Post-
greSQL DBMS (e.g., DellStore, FrenchTowns, Iso3166, and Usda), available from the
PgFoundry.org website. BrowserCookies is the schema used in this article to illustrate
challenges with schema testing, introduced in Figure 1.

The remainder (e.g., BankAccount, BookTown, CoffeeOrders, CustomerOrder, Per-
son, and Products) were extracted from textbooks, laboratory assignments, and online
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Table III. Mutation Operators for Relational Database Schemas

Operator Name Description
PKColumnA Adds a column to a PRIMARY KEY constraint
PKColumnR Removes a column from a PRIMARY KEY constraint
PKColumnE Exchanges a column in a PRIMARY KEY constraint
FKColumnPairA Adds a column pair to a FOREIGN KEY constraint
FKColumnPairR Removes a column pair from a FOREIGN KEY constraint
FKColumnPairE Exchanges a column pair in a FOREIGN KEY constraint
NNA Adds a NOT NULL constraint to a column
NNR Removes a NOT NULL constraint from a column
UColumnA Adds a column to a UNIQUE constraint
UColumnR Removes a column from a UNIQUE constraint
UColumnE Exchanges a column in a UNIQUE constraint
CR Removes a CHECK constraint
CInListElementR Removes an element from an IN (...) of a CHECK constraint
CRelOpE Exchanges a relational operator in a CHECK constraint

tutorials, where they were provided as examples. Nonetheless, it is important to note
that many of these are sufficiently complex for the well-established DBMonster tool,
an open-source SQL data generator, to have difficulties handling them, as shown in
our previous work [Kapfhammer et al. 2013]. iTrust, in particular, is a large schema
designed for the scenario of a medical application for teaching students about software
testing methods; it previously was featured in a mutation analysis experiment of Java
code [Smith and Williams 2007].

The original schemas were intended to be used with one of the DBMSs studied in this
article (i.e., PostgreSQL, HyperSQL, and SQLite), or were in suitably generic SQL such
that they could be imported easily into one of those DBMSs. The SQL for each schema
was parsed into an abstract object representation in our SchemaAnalyst tool, using
the General SQL Parser3, as described in our prior work [Wright et al. 2014]. Once
parsed into this representation, the schema could be written out in the SQL suitable
for the other DBMSs, such that we could use each schema with each DBMS, regardless
of subtle syntactic differences in SQL used by the creators of each DBMS.

5.2. Assessing the Fault-Finding Capability of Test Suites using Mutation Analysis

In order to provide answers to research questions 2–4, we apply mutation analysis,
a technique for estimating the fault-finding capability of test suites where particular
types of faults are concerned [Jia and Harman 2011]. Mutation analysis works by
generating a series of mutants for some artifact under test—in this case, the integrity
constraint specification portion of a database schema [Wright et al. 2013]. Mutants are
copies of the original artifact but with small modifications, or mutations, intended to
alter the behavior of the artifact, and thus model a fault that might be made by a real
software developer. A mutant is said to be “killed” when a test case exposes differences
in the behavior of one or more test cases when applied using the mutant and the
original artifact under test. The more mutants a test suite is capable of detecting, the
more discerning it is likely to be in terms of exposing real faults in practice [Jia and
Harman 2011].

Mutants are produced by mutation operators, which are responsible for altering
the artifact-under-test in a certain systematic way. In our previous work on database
schema testing [Kapfhammer et al. 2013; Wright et al. 2014], we described 14 different
mutation operators for mutating the integrity constraints of a schema. These operators
are listed in Table III. Each operator is named according to the constraint that it affects

3http://www.sqlparser.com.
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Fig. 14. The original SQL CREATE TABLE statement for the places table of the BrowserCookies example
of Figure 1 and two mutants produced by the PKColumnR (PRIMARY KEY Column Removal) operator. The
operator produces mutants by systematically removing columns from PRIMARY KEY constraints.

(i.e., PRIMARY KEY constraint, FOREIGN KEY constraint, NOT NULL constraint, UNIQUE con-
straint, CHECK constraint) and the type of modification they make (e.g., Addition of an
element such as a column, Removal of an element, or Exchanging an element with
another). For instance, the UColumnA operator mutates a UNIQUE constraint by adding
a column, while the FKColumnPairR modifies a FOREIGN KEY constraint by removing
a column from the source table and its associated column in the referenced table. An
example of the two mutants produced by the PKColumnR operator for the places table
of the BrowserCookies schema are shown in Figure 14. The PRIMARY KEY constraint of
this table involves the column pair host and path. In each of these mutants, one of
these columns is removed.

Not all mutants produced by a mutation operator are useful. For instance, operators
may produce an “equivalent” mutant, which is the result of some mutation that actually
results in the same behavior as the original artifact, thus making it indistinguishable
from the original in terms of its operation. We apply techniques, implemented in the
SchemaAnalyst tool and described in our previous work [Wright et al. 2014], for remov-
ing certain types of “ineffective” mutants—including classes of equivalent mutants,
certain types of “redundant” mutants that are functionally equivalent to some other
mutant already generated, and mutants that represent invalid or infeasible schemas
(e.g., so-called “still-born” mutants). Whether a mutant is classed as “ineffective” or not
depends on the DBMS, and as such, the final set of mutants removed varies depending
on the DBMS of current interest. (We discuss these issues in more detail in Wright
et al. [2014] and refer the reader to that reference for more information.)

As with traditional mutation analysis for programs, mutation analysis for database
schemas makes use of a test suite to be executed against the original non-mutated
artifact-under-test, and each individual mutant created by one of the mutation oper-
ators. When executing the series of INSERT statements comprising a test case for a
schema, we record whether each INSERT was accepted by the DBMS, or rejected, due to
an integrity constraint violation. In the context of integrity constraint testing, a mutant
is killed if a test case (as defined in Definition 4.1 (page 23)) registers a difference in the
sequence of acceptances and rejections made by the DBMS with the mutant compared
to when the original schema is used.

5.3. Experimental Procedure

Our experimental procedure involved generating test suites for each of the 32 schemas
with each combination of

—coverage criterion (i.e., the constraint coverage criteria APC, ICC, AICC, CondAICC,
ClauseAICC, and the column coverage criteria UCC, AUCC, NCC, and ANCC), as
detailed in Section 3;

—DBMS (i.e., PostgreSQL, HyperSQL and SQLite); and
—data generation technique (i.e., Random+ and the AVM, as explained in Section 4).
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Due to the stochasticity inherent in each data generation technique, we repeated test
suite generation 30 times with a different random seed. This was done to reduce the
possibility of our empirical results being produced by mere chance. We then applied
the generated test suites to mutant versions of each schema according to the mutation
analysis approach detailed in the last subsection. For the AVM and Random+, we set
pnull = 0.1 and plib = 0.25, which, as introduced in Section 4.3, are the probabilities as-
sociated with using a NULL value or a constant mined from a schema’s CHECK constraints,
respectively. We found that, so long as the probabilities were not greater than 0.5, the
actual values used did not influence the effectiveness of the test data generator. The
maximum number of fitness evaluations was set to 100,000—a standard termination
limit from the literature on search-based test data generation [Harman et al. 2010]. As
detailed in Section 7, we plan, as part of future work, to conduct additional experiments
to further discern how the data generators are sensitive to the tuning of these param-
eters. With that said, it is worth noting that prior empirical studies in the context of
search-based test data generation for Java programs (e.g., [Arcuri and Fraser 2013;
Kotelyanskii and Kapfhammer 2014]) suggest that parameter tuning rarely improves
the effectiveness of the data generators.

To best ensure that Section 5.5’s data visualizations do not obscure the most note-
worthy empirical trends, we always show the value of the evaluation metrics over
all relational schemas (e.g., in Figure 15 we plot the percentage of test requirements
covered over all of the 32 schemas). When appropriate to do so, we also comment on
data points for specific schemas, normally with either a focus on the largest and small-
est of the schemas or, alternatively, on the database schema that best illustrates a
fundamental trade-off in the empirical results.

5.4. Threats to Validity

The following threats to validity are inherent in our empirical study. We now discuss
how we mitigated their possible effects from the outset.

(1) The schemas are not representative of real-world schemas. While the rich and di-
verse nature of real software systems makes it impossible for us to claim that
our schemas are representative of all the characteristics of all possible relational
database schemas, we endeavored to select schemas from a wide variety of sources,
comprising real-world applications, conformance suites, textbook examples, and
schemas from databases that were used in previous studies, as explained in Sec-
tion 5.1. Furthermore, Table II shows the diversity captured by our 32 schemas,
with 1–42 tables, 3–309 columns, and 0–134 constraints, including CHECKs, FOREIGN
KEYs, PRIMARY KEYs, NOT NULLs, and UNIQUEs.

(2) The mutation operators are not representative of real faults. According to the “com-
petent programmer” hypothesis [DeMillo et al. 1978], programmers are likely to
produce programs that are nearly correct, implying that real faults will frequently
be the result of small mistakes. Our mutation operators are designed to model such
faults, in the context of relational database schemas, by making small changes
to each type of constraint. By implementing operators for both the addition and
removal of columns, we model faults of both omission and commission, further
improving the range of faults our operators can represent. It is worth noting that
prior empirical studies have demonstrated that mutation faults are indeed a valid
substitute for experimentation in the absence of real-world faults [Andrews et al.
2005; Do and Rothermel 2006; Just et al. 2014]. While we cannot, strictly speaking,
argue that these results also apply to the use of mutation for database schemas, it
is possible that they do hold since our schema mutants are very similar in spirit to
those used in these past experiments with Java and C programs.
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Table IV. Total Numbers of Test Requirements Derived for Different Schema for Each Coverage Criterion

(a) Constraint Coverage Criteria (b) Column Coverage Criteria

PostgreSQL/HyperSQL SQLite PostgreSQL/HyperSQL SQLite
APC 316 (316) 316 (316) UCC 1950 (1950) 1950 (1950)
ICC 958 (958) 1108 (1108) AUCC 1950 (1950) 1950 (1950)

AICC 958 (637) 1108 (712) NCC 1950 (1950) 1950 (1950)
CondAICC 1177 (893) 1327 (1000) ANCC 1950 (1694) 1950 (1739)

ClauseAICC 1571 (1288) 1721 (1378)

Note: Since HyperSQL and PostgreSQL share the same model of integrity constraints, test requirement
numbers are identical. Numbers in brackets correspond to the final number of test requirements used in
the experiments after duplicate and trivially infeasible requirements are removed.

(3) The statistical analysis used. Where not obvious from the box and whisker plots
accompanying answers to each research question, statistical tests were performed
to ascertain statistical significance of sample means. We used the Mann–Whitney
U test (Wilcoxon rank-sum test), a nonparametric test, since the normality of the
sample means could not be guaranteed as required by parametric statistical tests
such as the t-test.

(4) Defects in our SchemaAnalyst tool leading to incorrect results. It is possible that
defects are present in our implementation; however, we have a suite of comprehen-
sive, and frequently executed, unit tests for our tool. In addition, empirical results
were cross-checked whenever possible to ensure the absence of errors.

5.5. Answers to Research Questions

RQ1: Coverage. Table IV summarizes the total number of test requirements generated
for all of the schemas featuring in our study, following the removal of trivially infeasible
requirements. Trivially infeasible requirements are where a goal predicate mandates
that a particular table column be both NULL and not NULL simultaneously. This form of
infeasibility is easy to identify and remove. However, more complex forms of infeasible
requirements are possible and yet not as easily identifiable—usually as the result of
arbitrary CHECK constraints—and as such our SchemaAnalyst tool did not remove them
in advance.

For the constraint coverage criteria, the number of requirements increase moving up
through the subsumption hierarchy, since the criteria become more complex and add
test requirements for the more fine-grained aspects of integrity constraints that can
be tested. In general, the number of requirements is twice the number of columns for
the column coverage criteria. However, for ANCC, duplicate test requirements may be
created when a table has more than one NOT NULL constraint defined for it (as described
in Section 3.8), leaving the final test requirement count for ANCC lower than NCC.

As well as considering the number of test requirements derived for each criterion,
we are interested in how successful our data generation techniques are at “covering”
them, that is, finding data to complete the INSERT statements for each concrete test case
designed to fulfill each individual test requirement. Figure 15 shows box and whisker
plots of the percentage of test requirements covered for all schemas with a particular
a criterion, for the 30 repetitions of the experiments. The plots clearly show the AVM
to be more successful at generating data to cover test requirements than Random+.
With the AVM, all test requirements are successfully covered with the exception of a
small number of infeasible test requirements that remained following the initial filter-
ing of trivially-infeasible ones. These more complex forms of infeasibility occurred for
the Products schema and the AICC, CondAICC, and ClauseAICC constraint coverage
criteria, and also for the BookTown schema with the ANCC column coverage criterion.
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Fig. 15. The percentage of test requirements covered for each coverage criterion over all schemas with each
DBMS, using Random+ and the AVM test data generators. Each box spans from the 1st to 3rd quartile, with
whiskers extending up to 1.5× the interquartile range. The line across the middle of the box marks the
median. The white diamond denotes the mean, while filled circles correspond to outliers.

The Random+ data generator fails to consistently achieve 100% coverage for any of
the criteria. In general, Random+’s performance gets worse the higher a criterion is
in its particular subsumption hierarchy. The only exception is moving from CondAICC
to ClauseAICC, which seems to add test requirements that are easier for Random+
to cover. However, Wilcoxon rank-sum tests comparing the respective sets of repeti-
tions for the two criteria are not significant at the 0.05 level—the p-value is 0.09 for
HyperSQL and PostgreSQL, and 0.2 for SQLite.

In terms of variation across DBMSs, no variation is observed with the AVM due to per-
fect coverage scores being obtained in every instance. When comparing Random+ test
data generation across the three DBMSs, no variation is observed between PostgreSQL
and HyperSQL. This is because the two DBMSs implement integrity constraints in the
same way, giving rise to identical test requirements for all criteria, resulting in test
cases that were the same (aside from differences in the way data for columns types
across the two DBMSs are expressed). As discussed in Section 3, SQLite varies in
its implementation of PRIMARY KEY constraint, thus leading to slightly different test
requirements that manifest in a slight variation in coverage score when compared to
HyperSQL and PostgreSQL.

Conclusion for RQ1. It is possible to reliably generate test suites with full coverage
for each of the coverage criteria so long as the AVM technique is used. Differences
between DBMSs (if any) can be accounted for by the variations in behavior between
those DBMSs in terms of their implementation of their integrity constraints.

RQ2: Effectiveness at Finding Faults. To assess fault-finding capability we applied muta-
tion analysis for relational database schemas, as described in Section 5.2.

Application of our complete set of mutation operators to all of our schemas, following
the removal of “ineffective” mutants, totaled 3,775 with HyperSQL and PostgreSQL,
and 3,915 with SQLite. Since HyperSQL and PostgreSQL share the same model of
integrity constraint behavior, the number of mutants produced in each case is identical,
while there is a small amount of variation between these two DBMSs and SQLite.

Figure 16 shows the percentage of these mutants killed with the test cases generated
for a particular coverage criterion, over the 30 repetitions of the experiment. The plots
reveal a high degree of consistency across each of the 30 repetitions of the experiment,
with a maximum interquartile range (represented by the length of the box) of 1.7% and
0.2% for Random+ and the AVM, respectively.
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Fig. 16. The mean percentage of mutants killed against mean number of test cases generated over all
schemas. Constraint criteria, unique-column criteria and null-column criteria are plotted as square, trian-
gular, and circular points, respectively.

The percentage of mutants killed consistently improves when moving from one par-
ticular coverage criterion to the next further up in a specific subsumption hierarchy.
For the constraint coverage criteria, this is partly due to an increasing number of test
requirements, and therefore the number of test cases generated. However, adding test
cases does not result in an automatic increase in the number of mutants killed—it mat-
ters what test requirements are necessitated by the coverage criterion. For instance,
following the removal of duplicate and infeasible test requirements, the AICC criterion
produces fewer test requirements than does ICC. However, AICC leads to tests that
kill a significantly higher percentage of mutants. This is easily seen in Figure 16, a
scatter plot of the mean percentage of mutants killed against the mean number of test
cases for each coverage criterion. The data in this figure also shows that, for the column
coverage criteria, there is no correlation between test suite size and mutation score,
particularly when Random+ is used as the data generator.

One reason for the higher percentages obtained by column coverage criteria com-
pared to constraint coverage criteria is the highly productive nature of mutation op-
erators for UNIQUE and NOT NULL constraints, which column criteria are well suited to
killing. These operators produce 52% of the total mutants when aggregated over all
schemas and DBMSs, following the removal of “useless” mutants. As Figure 17 shows,
the “null-column” and “unique-column” criteria are able to kill a high proportion of mu-
tants related to UNIQUE and NOT NULL constraints, explaining why the high percentages
for these criteria are evident in the results.

Figure 18 shows that for constraint coverage criteria, the percentage of mutants
killed with test suites generated by Random+ search are consistently poorer than those
obtained with the AVM. This is likely due to the fact that fewer test requirements are
covered by Random+ search, resulting in fewer opportunities with which to kill the
same types of mutants. Interestingly, for column coverage criteria, Random+’s tests
often outperform those produced by the AVM. This seems to be due to the increased
diversity inherent in the test cases generated by Random+ search. The AVM generates
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Fig. 17. The percentage of mutants produced by a particular mutation operator for all of the schemas
that were killed by test cases generated when the AVM used different coverage criteria with the Hyper-
SQL/PostgreSQL DBMS. (Box plots should be interpreted as for Figure 15.)

Fig. 18. The percentage of mutants produced over all schemas that were killed using test cases generated
for each coverage criterion with each DBMS (i.e., HyperSQL, PostgreSQL, and SQLite), using both of the
data generators (i.e., Random+ and the AVM). (Box plots should be interpreted as for Figure 15.)
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Fig. 19. The percentage of mutants produced by a particular mutation operator for all of the schemas
that were killed by test cases generated using Random+ with different coverage criteria and the Hyper-
SQL/PostgreSQL DBMS. (Box plots should be interpreted as for Figure 15.)

tests from the same default starting point, and unless a random restart is required,
many test cases share similar characteristics, potentially lowering the likelihood of
killing as many mutants.

For the AVM, ClauseAICC is the coverage criterion for which test cases obtained the
highest mutant-killed percentages, for all three DBMSs. For Random+, it is AUCC.
However, ClauseAICC test suites generated with the AVM killed a significantly higher
percentage of mutants than AUCC test cases generated with Random+. For SQLite,
this is clearly seen from the Figure 17, since the distributions do not overlap. For
PostgreSQL and HyperSQL, the situation is less judicable from the figure alone; how-
ever, the Wilcoxon rank-sum test reveals a highly significant p-value of less than 10−8.
Overall, therefore, we judge that test suites generated according to the ClauseAICC
criterion with the AVM are likely to have the best fault-finding capabilities.

With respect to cross-DBMS comparisons, there is no difference between the results
obtained with HyperSQL and PostgreSQL, as found in the answer to the last research
question regarding coverage. There are some differences between those DBMSs and
SQLite, due to the difference in the way it implements PRIMARY KEY constraints. The
most noticeable difference is the performance of NCC and ANCC. For HyperSQL and
PostgreSQL, these criteria help kill PRIMARY KEY mutants, since columns must implic-
itly be not NULL for primary key columns. Thus NCC and ANCC perform better for
these DBMSs compared to SQLite, for which primary key columns may be NULL.

Conclusion for RQ2. The ClauseAICC criterion produces test suites with the high-
est mutant killing power when test suites are generated with the AVM. AUCC
is the strongest criterion when test cases are generated with Random+. Yet,
ClauseAICC tests produced with the AVM are stronger than AUCC-based tests
produced by Random+.

RQ3: Coverage Criteria and Types of Faults. Figures 17 and 19 show the percentages of
mutants killed broken down by the mutation operator that produced them for the
HyperSQL/PostgreSQL DBMSs. As we previously observed in the answer to the last
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research question the box and whisker plots reveal high consistency across trials, even
with Random+ test data generation. There are some broad trends for the operators that
hold across data generation technique and DBMS. The first is that the column coverage
criteria, unsurprisingly, tend to be amongst the best criteria at killing mutants to do
with changing the UNIQUE and NULL status of columns. AUCC outperforms all other
criteria for mutants produced by the UColumnA operator, where columns are given
UNIQUE status through the addition of a column to an existing or new UNIQUE integrity
constraint. (One of the reasons behind AUCC’s success, as found in the answer to the
last research question, seems to be to do with its strong ability to kill mutants from
this operator and the high volume of mutants it produces.) ANCC outperforms all
other criteria for mutants produced by the NNA operator, where columns are given
NULL status through the addition of a NULL integrity constraint.

These patterns exist because the constraint criteria only test integrity constraints
that already exist as part of the schema, not for those that may have been omitted (or
have had additional columns omitted from their declaration, for example in the case of
UNIQUE constraints). Column criteria therefore seem well-suited to testing for faults of
omission whereas constraint criteria are stronger at testing for faults of commission.
The latter is evident by the fact that criteria such as ClauseAICC are good at producing
test cases for detecting the removal of columns from UNIQUE constraints and the removal
of NOT NULL constraints as seen in plots for the UCColumnR (which removes columns
from UNIQUE constraints) and NNCR (which removes NOT NULL constraints) operators.
They also tend to frequently detect changes in CHECK constraints and FOREIGN KEY
constraints, especially those generated with ClauseAICC.

Some aspects of the results vary depending on the data generation technique. For
instance, ClauseAICC does not detect columns being swapped into UNIQUE constraints
with the UCColumnE operator anywhere near as well with Random+ data generation
as with the AVM. This, however, is due to the way that test suites are generated,
rather than the criterion. The AVM’s test suites tend not be as diverse as Random+,
as the search starts from the same default initial vector of data values. If these values
remain unchanged, the AVM can detect exchanges of columns from UNIQUE constraints
more easily, since they will more readily generate non-unique column values for over
consecutive INSERT statements. Random+, in contrast, will generate diverse and more
likely unique values that fail to detect the change.

For space reasons, we do not show the results for the SQLite DBMS, which are broadly
similar to those for HyperSQL/PostgreSQL. As found previously, any differences be-
tween DBMSs tend to be due to the difference in the way that PRIMARY KEY constraints
work for HyperSQL and PostgreSQL compared to SQLite. The NULL coverage criteria
NCC and ANCC tend to perform well for primary key operators for HyperSQL and
PostgreSQL but not SQLite, since primary keys in SQLite do not implicitly include a
NOT NULL constraint on the columns involved.

Conclusion for RQ3. Constraint coverage criteria and column coverage criteria have
some complementary effects in revealing different types of faults. Constraint coverage
criteria, ClauseAICC in particular, tend to be better at trapping faults of commission
while column constrain criteria, AUCC and ANCC in particular, tend to be good at
trapping certain types of omission faults.

RQ4: Combining Criteria and Fault-Finding Effectiveness. Given that the coverage criteria
in our three different subsumption hierarchies have very different aims, and given the
answer to the last research question—suggesting that different mutants are killed by
different criteria from these hierarchies—this final research question assesses how the
combination of test cases generated for different criteria may affect the percentage of
mutants killed.
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Fig. 20. The percentage of mutants killed over all schemas with different constraint and column coverage
criteria, when using the PostgreSQL DBMS with different data generators. (Box plots should be interpreted
as for Figure 15.)

Figure 20 shows box plots of the percentage of mutants killed by using all of the
test cases generated for different 2-way and 3-way combinations of criteria. The figure
shows the results for the AVM (part (a) of the figure) and Random+ data generator
(part (b)) when used with PostgreSQL only (however the trends are similar for the
other DBMSs). For the AVM, the ClauseAICC + UCC + ANCC combination achieves
the highest mutants-killed percentage (mean average 96%). This combination involves
UCC rather than AUCC, the former being different from the other two elements of
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the combination (ClauseAICC and ANCC) in that it is not at the top of its particular
subsumption hierarchy. Rather, ClauseAICC + AUCC + ANCC comes second for the
AVM with a mean average of 94% mutants killed. However, the success of UCC in com-
bination with ClauseAICC and ANCC may be an artefact of the AVM technique, as the
best combination does involves AUCC when Random+ is used as the data generation
technique, since for Random+, ClauseAICC + AUCC + ANCC is the combination that
kills the most mutants. Since the AVM uses default values, non-unique values may
be generated for all columns at once when generating tests with UCC, and it is this
characteristic of the data generator that seems to be responsible for collaterally killing
more mutants, not because of the specific strengths of UCC in particular.

Given that such a high percentage of mutants were killed with the top-scoring combi-
nations of criteria, particularly when considering the use of the AVM, we investigated
the constitution of the mutants that remained alive with that technique. We found that
these mutants were those produced by the CRelOpE, PKColumnA, and UColumnA op-
erators. CRelOpE produces mutants for relational expressions in CHECK constraints
where the relational operator is changed, while PKColumnA and UColumnA add
columns to the existing column set of PRIMARY KEY and UNIQUE constraints respectively.
These column sets may be empty in the case that the schema is mutated by adding a
PRIMARY KEY constraint or UNIQUE constraint. It appears that our criteria lead to tests
that still have trouble in killing mutants produced in the alternative case, where the
operator is adding a column to an existing constraint.

Conclusion for RQ4. Combining coverage criteria from each of the three subsumption
hierarchies improves fault-finding capability, due to the different types of faults each
of the criteria in those hierarchies is good at targeting. Combining criteria at the top
of each hierarchy results in the best fault-finding capability, although the use of UCC
“beats” AUCC when the AVM is used to generate test cases.

6. RELATED WORK

Since this article presents coverage criteria that support the testing of the integrity
constraints encoded in the schema of a relational database, it is related to prior work
in the area of adequacy criteria and testing methods for both database management
systems and database applications. Kapfhammer and Soffa presented what is, to the
best of our knowledge, the first family of test adequacy criteria for database applica-
tions [Kapfhammer and Soffa 2003]; it was later extended by Willmor and Embury
[2006]. Like our work, Kapfhammer and Soffa’s work formally defined adequacy cri-
teria and organized them into a subsumption hierarchy. Yet, in contrast to our focus
on the schema, their criteria consider the flow of data between the program and the
database. Halfond and Orso also introduced a criterion called “command form” cover-
age; instead of concentrating on the database’s schema, it uses a test coverage monitor,
like the one developed by Kapfhammer and Soffa [2008], to assess whether or not the
various database commands that could be generated by an application are actually
exercised [Halfond and Orso 2006]. Next, Tuya et al. proposed a form of predicate cov-
erage, based on the masking modified condition decision coverage criterion [Chilenski
and Miller 1994], that, unlike our work, tracks the coverage of SQL queries instead of
the database schema [Tuya et al. 2010]. Finally, Pan et al. presented a method that
calculates the coverage of a database application given a fixed state for a relational
database [Pan et al. 2011]. It is important to note that, since the aforementioned criteria
each have a different emphasis than those presented here, they are ultimately comple-
mentary approaches to evaluating the quality of tests for database-related software.

In recent years, researchers have developed a wide variety of methods that auto-
matically generate various types of data in support of testing database management
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systems and database applications; we survey the most directly related work in this
section. Slutz presented the random generation of SQL (RAGS) tool that creates
SQL queries that can support the testing of a DBMS [Slutz 1998]. Later, Bati et al.
implemented a genetic algorithm-based system that was more effective than RAGS at
generating queries in support of DBMS testing [Bati et al. 2007]. Similar to the two
aforementioned papers, Bruno et al. developed a different type of generator that also
enabled DBMS testing by creating queries designed to produce result sets of a desired
size [Bruno et al. 2006]. In the most recent work on this topic, Khalek and Khurshid
also created a data generator that can support the testing of a DBMS [Khalek and
Khurshid 2010]. All of these papers are different than ours because, first, they gener-
ate SQL queries instead of INSERT statements and, second, they primarily focus on the
testing of a database management system instead of a relational schema.

In addition to methods for generating queries, there exist many data generators
that can populate the database. The first notable system, called UpSizeR, can “scale”
a database by a specified factor, thus making it larger or smaller to facilitate activities
like performance testing [Tay et al. 2013]. Although UpSizeR does technically generate
data, it is different than our approach because it does not focus on correctness and
it cannot generate “negative cases” designed specifically to violate the schema’s
integrity constraints. There are also several manual or semiautomated methods that
can generate test data. For instance, Bruno and Chaudhuri presented a specification
language that helps a tester define a flexible data generator, with the primary aim of
avoiding the proliferation of bespoke data creation schemes implemented in a myriad
of languages [Bruno and Chaudhuri 2005]. Chays et al. described one of the best known
data generators, called AGENDA, that asks the tester to employ the category-partition
method to create data in a semi-automated fashion [Chays et al. 2000]. Finally, Will-
mor and Embury proposed an “intensional” approach that also supports the manual
specification of test suites for database applications [Willmor and Embury 2006]. Since
they are completely automated and require no guidance from the tester, the two data
generators presented here are distinct from these three previously described systems.
Moreover, while our two data generators are systematically guided by test adequacy
criteria, this is not the case for the systems presented in the three aforementioned
papers.

Similar to our generators, Khalek et al., Lo et al., and de la Riva et al. presented
automated methods for generating test data [Khalek et al. 2008; Lo et al. 2010; de la
Riva et al. 2010]. Additionally, Shah et al. described the X-Data tool for automatically
generating test data designed to kill the mutants of SQL queries [Shah et al. 2011].
Although these four examples of prior work all operate automatically, they create data
in support of testing SQL queries, while we focus on testing the integrity constraints
in the schema. Even though the X-Data system also uses mutation analysis, it does
so to guide the generator towards effective data while we use it as a way to evaluate
the effectiveness of test data generated according to logic coverage criteria. Ultimately,
these previously mentioned systems could be used, in conjunction with our test ade-
quacy criteria and data generators, as part of a complete system for testing database
applications. Finally, Houkjær et al. introduced a method for automatically generat-
ing data while taking into account both the database’s schema and any pre-existing
data [Houkjær et al. 2006]. In contrast to our methods, their focus is on performance
testing and, as such, their experiments do not evaluate the effectiveness of the gen-
erated data at finding schema faults. There is another difference between this paper
and the one by Houkjær et al.: while we demonstrate that our techniques support
the testing of 32 relational databases schemas (many of which are from real-world
databases), their experiments only consider databases that are part of benchmarks
from the Transaction Processing Performance Council.
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Since search-based test data generators, like the ones employed here, are complex
software artifacts, it is often important to evaluate their efficiency [Kempka et al. 2015].
Even though performance is not the focus of this paper, it is worth noting that Kinneer
et al. [2015a, 2015b] developed and used automated methods for empirical assessments
regarding worst-case time complexity, applying them to the data generation techniques
proposed in this paper. They found that data generation scales linearly with the size
of most types of schemas, yet for others is quadratic, or in rare cases, cubic or worse;
they also noted that the stronger coverage criteria always necessitate more time for
test data generation [Kinneer et al. 2015a]. Since they were produced with sizable
schemas that contained hundreds or thousands of tables, constraints, and attributes,
these results suggest that this paper’s criteria support efficient test data generation.

We also present logic coverage criteria that support the systematic testing of rela-
tional database schemas. There is a long history of work in logic testing that, according
to Amman and Offutt, stretches back to 1979 [Ammann and Offutt 2008]. With the
exception of Tuya et al.’s development of a predicate coverage criterion for SQL queries
[Tuya et al. 2010], none of the prior work has, to the best of our knowledge, considered
any aspect of relational databases. While the idea of condition and decision coverage
has been used in practice for many years, it was formalized by Zhu et al. [1997]. More
germane to this work and its focus on active coverage criteria, is Chilenski and Miller’s
proposal of modified condition decision coverage (MC/DC) [Chilenski and Miller 1994],
Chilenski and Richey’s development of masking MC/DC [Chilenski and Richey 1997],
Dupuy and Leveson’s empirical evaluation of MC/DC’s effectiveness, and, more broadly,
Amman and Offutt’s unified explanation of the logic coverage criteria [Ammann and
Offutt 2008]. Work on the development of logic criteria continues: recently Kaminski
et al. proposed a new criterion, called minimal-MUMCUT, that has been shown to find
more faults than MC/DC [Kaminski et al. 2013]. Since the focus here is on the creation
and evaluation of logic testing criteria for integrity constraints in relational database
schemas, it may be possible to follow the overall strategy of the aforementioned paper
to develop “database-aware” versions of these recently proposed criteria.

Since we employ mutation analysis to evaluate the quality of the automatically
generated test data, we briefly survey related work in this area. In our own prior work,
we developed and empirically evaluated various methods for improving the efficiency
of mutation analysis [Wright et al. 2013] and studied the impact that different types
of schema mutants can have on the mutation score [Wright et al. 2014]. Since this
work is not concerned with improving or better understanding the mutation analysis
of schemas, we simply incorporate the best practices and empirical findings from our
prior work into the experiments here. In contrast to our focus on the relational schema,
the prior work of others has proposed and evaluated mutation operators for the SQL
SELECT statements used by applications to retrieve data stored in a database [Tuya
et al. 2006]. This approach was later incorporated into a tool for instrumenting and
testing database applications written in the Java programming language, potentially
mutating any executed SELECT statement [Zhou and Frankl 2011]. Finally, Chan et al.
proposed some operators for mutating schemas [Chan et al. 2005]; yet, unlike this
paper, they provide neither an implementation nor an evaluation. All of this prior
work is similar to ours in that each of these mutation analysis methods make small
changes to components of database applications.

7. CONCLUSIONS AND FUTURE WORK

The data in a relational database is often described as an organization’s most important
asset, with the database’s schema expressing the integrity constraints that protect this
valuable data. Since, despite industry advice to the contrary, there has been little work
focused on assessing the correctness of the integrity constraints in a relational database
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schema, we presented nine different coverage criteria for testing the design and imple-
mentation of these critically important constraints. Constraint coverage criteria, based
on logic coverage criteria [Ammann and Offutt 2008], test the formulation of integrity
constraints that have actually been specified in the schema, making them well-suited
to finding faults of commission, while column coverage criteria test the unique and
NULL status of columns in tables, making them more suited to finding faults of omis-
sion. After explaining how our criteria account for the idiosyncrasies associated with
the underlying DBMS that hosts the data and the schema, this paper formally defined
the test adequacy criteria and related them in three subsumption hierarchies.

We presented two approaches for generating test data to satisfy the test requirements
of each criterion. The first, Random+, generates data randomly with a bias towards
certain constants appearing in the CHECK constraints of the schema. The second is
a search-based method based on Korel’s alternating variable method (AVM) [Korel
1990], which uses a fitness function to guide it to the required test data. The test data
generated becomes part of a series of SQL INSERT statements. Our testing procedure
then checks whether these INSERTs succeed or fail as expected.

Incorporating 32 schemas—including some real-world ones from databases in, for
instance, the Mozilla Firefox Internet Browser and the StackOverflow website—and
three representative and frequently used database management systems (i.e., Hyper-
SQL, PostgreSQL and SQLite), this paper reported on an empirical study investigating
four research questions. The experiments for the first question revealed that it is pos-
sible to reliably generate test suites that achieve full coverage for each of the criteria
in the subsumption hierarchies. To answer the second research question, we evaluated
our coverage criteria using mutation analysis. The results showed that, in general,
the “higher” a criterion was in the subsumption hierarchy, the more mutants it killed.
As an answer to the third research question, the experiments pointed out that dif-
ferent subsumption hierarchies were indeed more suited to killing certain types of
mutants than others. Yet, we also discovered that, in answer to research question
four, even higher mutation scores could be obtained by combining criteria across the
subsumption hierarchies.

As part of future work, we intend to develop new methods for testing data types
in schemas—for example, by constructing INSERT statements with values that are in-
range and out of bounds. We also intend to apply different types of search techniques,
such as genetic algorithms and hybrids of the random, local, and global search methods.
Moreover, we plan general improvements to the data generation process so that it both
handles more types of relational schemas and kills more mutants. For instance, we
are working on improvements to the data generator that can efficiently and effectively
identify and manage cyclic dependencies between tables in a database.

To best ensure that we can complete future experiments with relational schemas
larger than those used here, we plan to enhance our prior work in mutation analysis
(e.g., [Wright et al. 2013, 2014]) to further increase the efficiency of this process. In ad-
dition to future experimentation with larger schemas and more database management
systems, we also intend to conduct many new experiments. Following the experimental
protocols established by Arcuri and Fraser [2013] and Kotelyanskii and Kapfhammer
[2014], we will perform experiments to determine whether tuning parameters can af-
fect the performance of the search process for generating data. In adherence to the
guidelines set by Fraser et al. in their study of test generation for Java classes [Fraser
and Arcuri 2015], we will also empirically compare human-produced tests with those
generated by automated methods like the ones in this paper. We also intend to improve
the human-readability of our tests, particularly in the area of string values [Afshan
et al. 2013; McMinn et al. 2012; Shahbaz et al. 2015]. Finally, following the experi-
mental protocol established by Just et al. [2014], we want to conduct experiments to
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conclusively determine if schema mutants are a valid substitute for real-world faults
in relational database schemas.

Given that different DBMS vendors interpret the SQL standard differently, thus
providing different implementations of integrity constraints, in future work we also
intend to investigate the possibility of producing integrity constraint mutants that are
targeted towards the differences across DBMSes—a form of “semantic mutation” [Clark
et al. 2013] for DBMSs. Finally, we will integrate the presented adequacy criteria with
different database-aware testing methods (e.g., test case prioritization [Haftmann et al.
2007], test suite reduction [Kapfhammer 2012], and automated fault localization [Clark
et al. 2011]), to ensure that they benefit from the enhanced guidance often afforded by
a systematic testing strategy. Ultimately, combining this paper’s test adequacy criteria
and data generators with the improvements completed during future work will yield
an effective and efficient way to thoroughly test the integrity constraints in a relational
database schema.

For more information about the SchemaAnalyst tool, please visit our website: http://
www.schemaanalyst.org.
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