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ABSTRACT
Although a software application always executes within a
particular environment, current testing methods have largely
ignored these environmental factors. Many applications ex-
ecute in an environment that contains a database. In this
paper, we propose a family of test adequacy criteria that
can be used to assess the quality of test suites for database-
driven applications. Our test adequacy criteria use dataflow
information that is associated with the entities in a relational
database. Furthermore, we develop a unique representation
of a database-driven application that facilitates the enumer-
ation of database interaction associations. These associa-
tions can reflect an application’s definition and use of data-
base entities at multiple levels of granularity. The usage of
a tool to calculate intraprocedural database interaction as-
sociations for two case study applications indicates that our
adequacy criteria can be computed with an acceptable time
and space overhead.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; D.2.8 [Software Engineering]: Metrics—
Product metrics

General Terms
Experimentation, Languages, Verification

Keywords
database-driven applications, test adequacy criteria

1. INTRODUCTION
The process of testing software is difficult because it re-

quires the description of all the interfaces in a software sys-
tem and the adequate testing of these interfaces. Yet, even
simple software applications have complicated and ever-
changing operating environments that increase the number
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of interfaces and the interface interactions that must be
tested. Device drivers, operating systems, and databases
are all aspects of a software system’s environment that are
often ignored during testing [21]. In recent years, a wide
range of traditional software testing techniques have been
proposed, implemented, and evaluated. However, relatively
little research has specifically focused on the testing and
analysis of applications that interact with databases.

A testing effort cannot ensure the production of high qual-
ity software if it does not consider the operating environment
of the application under test. Yet, it is not sufficient to
simply test the program and each aspect of the program’s
environment in isolation. In order to establish a high level
of confidence in a software system with a complicated en-
vironment, it is necessary to develop test adequacy criteria
that correctly capture a program’s interaction with its en-
vironment. An adequacy criterion can be used to automat-
ically generate test suites that are satisfactory with respect
to the selected criterion. These “environment aware” ade-
quacy metrics can also be used to assess the quality of tests
that are manually created by software developers. Finally,
test adequacy criteria can serve as stopping rules to deter-
mine when the testing of an application and its environment
can cease [23].

Intuitively, a database-driven application is a program
whose environment always contains one or more databases.
Given the preponderance of high quality database manage-
ment systems and the number of organizations that are now
collecting an unprecedented amount of data, there is a clear
need for software testing techniques that test an applica-
tion and its interaction with a database. In this paper,
we define a family of dataflow-based test adequacy crite-
ria for database-driven applications. Specifically, we pro-
vide formal definitions for the all-database-DUs, all-relation-

DUs, all-attribute-DUs, all-record-DUs, and all-attribute-

value-DUs adequacy metrics as companions to the tradi-
tional all-DUs dataflow adequacy criterion. Tests that are
adequate with respect to this family of criteria exercise all
of the database interaction associations for all of the en-
tities within a relational database. Moreover, we develop
a representation of a database-driven application called a
database interaction control flow graph (DICFG) in order
to calculate our family of test adequacy metrics. We also
present algorithms for constructing this representation of a
database-driven application. Next, we provide an empiri-
cal analysis of the time and space overhead incurred by a
tool that enumerates the database interaction associations
required by our family of test adequacy criteria.
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Figure 1: An Instance of the Relational Database Schema in the ATM Application.

The important contributions of this paper are as follows:

1. The definition of a database-driven application and the
presentation of equations that describe the dataflow
information within this type of application.

2. The definition of a family of test adequacy criteria for
database-driven applications that is based on the tra-
ditional dataflow all-DUs criterion.

3. A representation for database-driven applications that
describes a program’s interaction with relational data-
base entities.

4. An examination of the time and space overhead in-
curred during the generation of intraprocedural data-
base interaction associations (i.e. associations within
a method) for two case study applications.

2. AN EXAMPLE APPLICATION
In order to make our discussion more concrete, we de-

scribe a simple example application. In this application, the
user is able to conduct an unlimited number of transactions
with his/her account after submitting the appropriate PIN
number. The currently supported transactions include the
capability to deposit or withdraw money, transfer money
from one account to another, and check the balance of an
existing account. The relational schema of the Bank data-
base that is used by the ATM application consists of the
UserInfo relation and the Account relation. Figure 1 shows
an example configuration of the relational schema. There
is a foreign key constraint that requires any card number

that is specified in the Account relation to be associated
with a card number in the UserInfo relation. Also, the cur-
rent specification of the relational schema states that there
is a one-to-many relationship between the card number at-
tribute in UserInfo and the Account relation’s card number

attribute.

3. TESTING CHALLENGES
A test adequacy measure that includes an understanding

of the source code of the program and the state of the data-
base(s) with which the program interacts must address a
number of challenges. Even though the state space of an
application that interacts with a relational database is well-
structured (because it is described by a relational schema),
it is also essentially infinite [4]. Also, the representation of
a database-driven application must clearly indicate the cou-
pling points between the program and the entities within
the database [12]. Thus, the calculation of any test ad-
equacy metric for database-driven applications requires a

unified application representation to select defect-revealing
test cases from an input space that is essentially infinite.

A test adequacy criterion for database-driven applications
must ensure the existence of tests that can reveal the types
of faults that are commonly found in programs that inter-
act with databases. Accuracy, relevancy, completeness, and
consistency are some of the aspects that are commonly asso-
ciated with the quality of the data that is stored in a data-
base [14, 18, 20]. In order to examine the types of defects
found in database-driven applications, we use the concep-
tion of database integrity initially proposed by Motro [14].
Thus, we view the integrity of an application’s database as
a function of the validity and completeness of the data that
is stored within the database. Intuitively, a database is in
a valid state if it contains only records of information that
reflect the state of the real world. Moreover, a database is
complete if it contains all of the records of information that
reflect the current state of the real world.

Using Motro’s view of database integrity, it is clear that a
database-driven application can cause the violation of data-
base integrity in four different ways [14]. A program can
violate the validity of one of its databases if (1-v) it inserts
a record into a database that does not reflect the real world
or (2-v) it fails to insert a record into the database when the
status of the real world changes. A database-driven appli-
cation can violate the completeness of one of its databases
if (1-c) it deletes a record from a database when this record
still reflects the real world or (2-c) the status of the real
world changes and it fails to include this information as a
record inside of a database.

A testing approach designed to isolate database-driven ap-
plication defects that violate database validity and/or com-
pleteness in fashion (2) would require the ability to monitor
the status of the real world. However, a testing technique
could reveal faulty program operations that violate database
validity or completeness in fashion (1). In fact, a testing ap-
proach that causes a database-driven application to change
the database in an inappropriate fashion and then attempts
to reference the inappropriate database entities will reveal
program source locations that lead to validity and complete-
ness violations of the first type. In this paper, we develop a
family of test adequacy criteria that are tailored to isolate
program defects that can cause type (1-v) and (1-c) viola-
tions.

As an example, suppose that the application described
in Section 2 contains an addUser operation that inappropri-
ately inserts a null value into a database record that contains
a new ATM user’s information. When executed, this defect
would cause a type (1-v) violation. As another example,
assume that the same ATM data management application



select A1, A2, . . . , Aq

from r1, r2, . . . , rm

where Q

(a)

delete from r
where Q

(b)

insert into r(A1, A2, . . . , Aq)
values(v1, v2, . . . , vq)

(c)

update r
set Al = F (Al)
where Q

(d)

Figure 2: General Examples of the SQL Operations.

provides a faulty removeUser operation to delete an ATM
user’s account based upon the unique ID associated with the
user. If this operation contains a defect that interprets the
provided ID as one of the ATM card numbers assigned to
a user, it could erroneously remove multiple accounts and
cause a type (1-c) violation. Both of these faults will only
be revealed by a test case that executes the faulty operation
and then subsequently executes some additional program
operation(s) that attempt to use the erroneous data within
the database. The anecdotal evidence provided by our past
examples and several studies of the fundamental dimensions
of data quality in databases [14, 18, 20] clearly motivate the
usage of a dataflow-based test adequacy criterion.

4. TERMINOLOGY

4.1 Relational Database Model
Due to the dominance of the relational model in exist-

ing data-processing applications, we limit our discussion to
database-driven applications that interact with relational
databases [17]. The fundamental concept in the relational
data model is a relation. A relational database can be viewed
as a set of relations where a relation of attributes A1, . . . , Aq,
with domains M1, . . . , Mq , must be a subset of M1×. . .×Mq .
That is, a relation is simply a set of records. Each record
in a relation can be viewed as an ordered set of attribute
values. A relational database schema describes the logical
design of the relations inside the database and a relational

database instance is a populated example of the schema [17].

4.2 Structured Query Language Operations
Among other functionality, the structured query language

(SQL) includes a data-definition language (DDL) and a data-
manipulation language (DML) that facilitate the definition
of relational schemas and the manipulation, insertion, and
deletion of relational data [17]. This paper will focus on the
SQL DML operations of select, delete, insert, and up-
date and also consider SQL statements that combine these
commands in an appropriate fashion. Generally, our model
of the structured query language contains all of the features
of the SQL 1999 standard that are most relevant to the flow
of data in a database-driven application.

This paper will rely upon the simple description of these
SQL operations provided by Figure 2. First, it is important
to note that parts (a), (b), and (d) of Figure 2 contain a
reference to logical predicate Q. The format of Q is Vs < Vt

where < ∈ {<,≤, >,≥, 6=, in,between, like} and Vs is any
attribute from the set {A1, A2, . . . , Aq} (or, just {Al} in

the case of the update statement). We define Vt in a fash-
ion similar to Vs; however, the value of Vt can also be an
arbitrary string, a pattern description, or the result of the
execution of a select query. Finally, the v1, . . . , vq in part
(c) of Figure 2 represent the specific attribute values that
will be inserted into relation r. We will assume that all SQL
operations will process relations specified by the relational
schema. Furthermore, this paper will not focus on database-
driven applications that use SQL DDL statements to change
the relational schema at runtime.

4.3 Database-Driven Applications
Silberschatz et al. define a database-management system

(DBMS) as a set of procedures that are used to access, up-
date, and modify a collection of structured data called a
database [17]. A database-driven application consists of a
database, a database management system (DBMS), and a
set of applications that interact with the database through
the management system. Chan et al. propose a classification
for database-driven applications that requires all such soft-
ware systems to fall into one of two categories [2, 3]. In the
first category, the applications that use the DBMS are con-
structed with the development environment that is provided
by the management system. In the second category, the ap-
plication(s) are written in a general purpose programming
language that allows for the embedding of data manipula-
tion language statements [3]. Due to the predominant usage
of general purpose programming languages, we will focus on
database-driven applications that belong to the second cat-
egory. For the purposes of this paper, we define a database-
driven application in Definition 1. Next, Definition 2 states
our understanding of a database interaction point and Def-
inition 3 explains the specificity of an arbitrary interaction
point.

Definition 1. A database-driven application consists of a
program P and database(s) D1, D2, . . . , Dn that are speci-
fied by the fixed relational schema(s) S1, S2, . . . , Sn, respec-
tively. Method m in program P can be viewed as a set of
database interaction points, I = {I1, I2, . . . , Is}. 2

Definition 2. An arbitrary database interaction point Ir ∈
I, in P ’s method m, corresponds to the execution of one
of the SQL data manipulation language operations select,
delete, insert, or update on relational database Di. 2

Definition 3. The specificity of a database interaction
point Ir ∈ I can be static, dynamic, or partially dynamic.
A static interaction point completely specifies the aspects of
Di’s relational schema Si that it will manipulate. A dynamic

interaction point requires the specification of the desired ma-
nipulations during the execution of P . A partially dynamic

interaction point includes manipulations of database Di that
are dynamically and statically specified. 2

Figure 3 provides the complete code listing for the get-

AccountBalance and the lockAccount methods. Each
of these methods contains exactly one database inter-
action point. Since the executeQuery method used in
getAccountBalance currently accepts a fixed String vari-
able qs, it would be considered a static database interaction
point. The usage of the card number parameter inside of
the lockAccount method makes this method’s database in-
teraction point partially dynamic.



1 public double getAccountBalance(int uid)
2 throws SQLException

3 {
4 double balance = NO_VALUE;
5 String qs = "SELECT Account.ID" +

6 "Account.Balance FROM Account;";
7 Statement stmt =

8 m_connect.createStatement();
9 ResultSet rs = stmt.executeQuery(qs);
10 while( rs.next() )

11 {
12 if( rs.getInt("id") == uid )

13 {
14 balance = rs.getDouble("balance");

15 }
16 }
17 return balance;

18 }

(a)

1 public boolean lockAccount(int card_number)
2 throws SQLException

3 {
4 boolean completed = false;

5 String qu_lock =
6 "UPDATE UserInfo SET acct_lock=1 WHERE card_number=" +

7 card_number + ";";
8 Statement update_lock = m_connect.createStatement();
9 int result_lock = update_lock.executeUpdate(qu_lock);

10 if( result_lock == 1)
11 {

12 completed = true;
13 }

14 return completed;
15 }

(b)

Figure 3: The getAccountBalance and the lockAccount Methods in the ATM Application.

4.4 Test Suites
Intuitively, the state of a database-driven application in-

cludes the values of all of the program’s live variables and
the complete state of the relational database(s) with which
the program interacts. The state of a single relational data-
base consists of all of the records within all of the relations
stored inside of the database. Definition 4 states our un-
derstanding of a test suite T that can be used to assess the
quality of a database-driven application [13]. We use ∆f

to denote the externally visible state of the database-driven
application under test.

Definition 4. A test suite T is a triple
〈∆0, 〈T1, . . . , Te〉, 〈∆1, . . . , ∆e〉〉, consisting of an initial
external test state, ∆0, a test case sequence 〈T1, . . . , Te〉 for
state ∆0, and expected external test states 〈∆1, . . . , ∆e〉
where ∆f = Tf (∆f−1) for f = 1, . . . , e. 2

Definition 5 notes that a specific test Tf ∈ 〈T1, . . . , Te〉
can be viewed as a sequence of test operations that cause
the application under test to enter into states that are only
visible to Tf . In Definition 6, we describe a restricted type
of test suite where each test case returns the application un-
der test back to the initial state, ∆0, before it terminates.
If a test suite T is not independent, we do not place any re-
strictions upon the 〈∆1, . . . , ∆e〉 produced by the test cases
and we simply refer to it as a non-restricted test suite.

Definition 5. A test case Tf ∈ 〈T1, . . . , Te〉, is a triple
〈δ0, 〈o1, . . . , og〉, 〈δ1, . . . , δg〉〉, consisting of an initial inter-
nal test state, δ0, a test operation sequence 〈o1, . . . , og〉 for
state δ0, and expected internal test states 〈δ1, . . . , δg〉 where
δh = oh(δh−1) for h = 1, . . . , g. 2

Definition 6. A test suite T is independent if and only if
for all γ ∈ {1, . . . e}, ∆γ = ∆0. 2

Non-restricted test suites can capture more of an applica-
tion’s interaction with a database while requiring the con-
stant monitoring of database state and the potentially fre-
quent re-computations of test adequacy. While independent
test suites capture only a program’s interaction with a fixed
database, the measurement of the adequacy for these test
suites does not require database monitoring facilities, the
re-creation of an application’s representation, and the re-
computation of test adequacy. In Section 8, we directly

address the practicality of measuring the adequacy of inde-
pendent test suites and we highlight the issues associated
with calculating the adequacy of non-restricted test suites.

5. DATAFLOW INFORMATION

5.1 Preliminaries
As noted by Daou et al., a database interaction point

Ir can be viewed as interacting with different entities of a
relational database, depending upon the granularity with
which we view the interaction [6]. That is, we can view a
SQL statement’s interaction with a database at the level of
databases, relations, records, attributes, or attribute values.
Suppose that program P interacts with arbitrary database
Di at a database interaction point Ir. Database Di can be
viewed as a set of relations so that Di = {r1, . . . , rm}. More-
over, an arbitrary relation rj can be seen as a set of records
such that rj = {t1, . . . , to}. Each record is an ordered set
of attribute values so that tk = 〈tk

1 , . . . , tk
q 〉. We use the no-

tation tk
l to denote the value of the lth attribute of the kth

record in a specified relation. We use a notational conven-
tion name(Di), name(rj), name(tk) to respectively denote
the name of database Di, relation rj , and record tk when we
want to differentiate between the names of these entities and
their contents. Finally, the notational convention name(Al)
and name(tk

l ) are used to provide a name that respectively
associates a specific attribute and attribute value with the
containing relation. Definition 7 reflects our understanding
of the type of a database interaction.

Definition 7. The type of database interaction point Ir is
assumed to be defining, using, or defining-using. If Ir corre-
sponds to the execution of one of the SQL operations delete
or update, then Ir can be of type defining or defining-using.
If Ir is the execution of the SQL insert statement, then Ir

is of type defining. If Ir corresponds to the execution of the
SQL select operation, then Ir is of type using. 2

The defining-using type is observed at a database inter-
action point when the SQL delete and update statements
require the deletion or insertion of records that are chosen by
using other attribute values. Thus, the form of the predicate
Q in the SQL delete and update statements will deter-
mine whether a database interaction point is of type defin-
ing or of type defining-using. However, at coarse views of



a database interaction, the defining-using type is subsumed
by the defining type. For example, suppose that we view
the SQL delete statement in database interaction point Ir

at the coarse level of the database. Even if the delete de-
fines records in one relation and the predicate Q uses an
attribute in another relation, the overall operation can be
seen as defining the database. Yet, when the same state-
ment is viewed at the level of attribute interactions, it is
clear that the delete defines the attributes in one relation
and uses the attributes that are merely referenced in Q.

The call to executeQuery in getAccountBalance and the
invocation of executeUpdate in the lockAccount opera-
tion are the only database interaction points in our exam-
ple methods. Since the getAccountBalance method exe-
cutes a SQL select statement that can only reference val-
ues within a relational database, the operation contains a
database interaction point of type using. However, since
the lockAccount method executes a SQL update statement
that can change values within a relational database, this op-
eration contains an interaction point that is either of type
defining or type defining-using. If the interaction point in
lockAccount is viewed at the coarse level of the database,
then it is of type defining. Yet, when viewed at the level of
database attributes, this interaction point uses card number

and defines acct lock.

5.2 Enumerating Database Entities
In order to compute the database interaction associations

that capture a program’s interaction with a database at dif-
ferent levels of granularity, we provide equations to enumer-
ate the sets of entities that might be subject to definition
or usage at database interaction point Ir. These database
entity sets can be used to augment the control flow graph
of a method, as described in Section 7. Our formulations
can enumerate D(Ir), Rl(Ir), A(Ir), Rc(Ir), and Av(Ir),
the sets of databases, relations, attributes, records, and at-
tribute values at a specific interaction point, respectively.

As observed by Dauo et al., a static analysis of a database-
driven application’s source code will completely reveal data-
base entities only when the interaction point is at the level of
database, relation, or attribute [6]. A knowledge of the state
of the database is required to correctly enumerate the sets
of records and attribute values. However, the precise enu-
meration of D(Ir), Rl(Ir), A(Ir), Rc(Ir), and Av(Ir) is not
possible if the specific database interaction point Ir is either
dynamic or partially dynamic. Since we will rely upon these
sets of entity names to compute dataflow information that
will be used for testing purposes, we favor a conservative
over-estimate of these sets whenever there is any ambiguity
about set membership.

In our formulations to enumerate Rl(Ir), Rc(Ir), A(Ir),
and Av(Ir) we use the functions GRl

(Ir), GRc(Ir, j), and
GA(Ir, j), respectively. These functions compute the indices
of the defined or used relations, records, and attributes that
are referenced at interaction point Ir. The function GRl

(Ir)
returns the indices of the relation(s) whose definition or us-
age is detectable by a static analysis of Ir. However, if Ir is
dynamic or partially dynamic, GRl

(Ir) returns all relation
indices that might be defined or used at the provided data-
base interaction point. The function GA(Ir, j) returns all
of the attribute indices that are defined or used by Ir when
it refers to relation rj . If a static analysis of Ir does not
completely reveal all of the referenced attributes, GA(Ir, j)

returns all possible attribute indices. Finally, GRc (Ir, j) re-
turns the indices of all the records that are either defined
or used at interaction point Ir when a reference to rela-
tion rj occurs. The computation of GRc(Ir, j) requires an
inspection of the state of the relation rj . If the provided
Ir is dynamic or partially dynamic, GRc (Ir, j) performs a
conservative over-estimate of all possible records.

The name of the database within the set D(Ir) is estab-
lished whenever program P executes the SQL use statement
to select a database. Since our example system only inter-
acts with the Bank database, we know that D(Ir) = {Bank}
at all database interaction points. Equation 1 describes
Rl(Ir), the set of the names of relation(s) that might be sub-
ject to definition or usage if database interaction point Ir is
a select, delete, or update statement. If Ir involves the
execution of an insert statement that only interacts with a
single relation, then we always have Rl(Ir) = {name(r)}.
For example, the getAccountBalance method described in
Figure 3(a) has a database interaction point on line 9 so
that Rl(Ir) = {Account}. Furthermore, the lockAccount

method described in Figure 3(b) has a database interaction
point on line 9 where we have Rl(Ir) = {UserInfo}.

Rl(Ir) =
�

j∈

GRl
(Ir)

name(rj) (1)

Equation 2 describes uses the enumeration ofRl(Ir) to de-
termine the names of the attributes that are associated with
each of these relation(s). At the database interaction point
in the getAccountBalance method, we see that A(Ir) =
{Account.ID,Account.Balance}. Also, the database interac-
tion point in the lockAccount method yields the attribute
names A(Ir) = {UserInfo.acct lock,UserInfo.card number}.

A(Ir) =

|Rl(Ir)|�

j=1

�

l∈

GA(Ir,j)

name(Al) (2)

Equation 3 provides our formulation for Rc(Ir), the set
of records that might be defined or used at an arbitrary
database interaction point. Using the instance of the rela-
tional schema provided in Figure 1, it is clear that the data-
base interaction point in the getAccountBalance method
produces Rc(Ir) = {〈1, . . . , 1200, 1〉, . . . , 〈5, . . . , 125, 4〉}.1

Since the database interaction point in the lockAccount

method depends upon the input to this method, we must
conservatively enumerate all of the records inside the User-

Info relation. However, if we knew that card number = 1
during the execution of lockAccount, we could enumerate
Rc(Ir) = {〈1, 32142, . . . , 0〉}.

Rc(Ir) =

|Rl(Ir)|�

j=1

�

k∈

GRc
(Ir ,j)

name(tk) (3)

Equation 4 describes Av(Ir), the set of attribute val-
ues that might be defined or used at a database inter-
action point. If we use the instance of the relational
schema provided in Figure 1, the database interaction

1
For the sake of brevity, we omit the full names of users and bank

accounts in our examples of Rc(Ir) and Av(Ir).



point in the getAccountBalance method yields Av(Ir) =
{1, 1200, 1, . . . , 5, 125, 4}. Once again, the input-dependent
database interaction point in lockAccount forces the enu-
meration of all of the attribute values within the records of
the UserInfo relation.

Av(Ir) =

|Rl(Ir)|�

j=1

�

k∈

GRc
(Ir,j)

�

l∈

GA(Ir ,k)

name(tk
l ) (4)

6. TEST ADEQUACY CRITERIA

6.1 Traditional Definition-Use Associations
Throughout our discussion of a new family of dataflow-

based test adequacy criteria for database-driven applica-
tions, we will adhere to the notation initially proposed in
[8, 16]. For a standard program, the occurrence of a vari-
able on the left hand side of an assignment statement is
called a definition of this variable. The usage of a variable
occurs when it appears on the right hand side of an assign-
ment statement or in the predicate of a conditional logic
statement or an iteration construct [11].

We will view a method in an application as a control flow
graph (CFG) G = (N, E) where N is the set of CFG nodes
and E is the set of CFG edges. Next, we define a definition

clear path for variable x as a path in a CFG 〈nρ, . . . , nτ 〉,
such that none of the nodes nρ, . . . , nτ contain a definition
or undefinition of program variable x [8]. Furthermore, we
define the def-use association as a triple 〈nd, nuse, x〉 where
a definition of variable x occurs in node nd and a use of x
occurs in node nuse [11]. A complete path is a path in a
method’s control flow graph that starts at the CFG’s entry
node and ends at its exit node [8]. A complete path πx

covers a def-use association if it has a definition clear sub-
path, with respect to x and the method’s CFG, that begins
with node nd and ends with node nuse [8].

6.2 Database Interaction Associations
While traditional definition-use associations are related to

the variables in the program under test, this paper focuses
on database interaction associations that involve the entities
within a relational database. For an arbitrary method m,
we define D(I) = � s

r=1D(Ir) as the set of the one or more
databases that are interacted with during the execution of
m. We define Rl(I), A(I), Rc(I), and Av(I) in an analo-
gous fashion. A database-interaction association is a triple
〈nd, nuse, x〉 where the definition of relational database en-
tity x happens in node nd and a use occurs in node nuse.
However, each database-interaction association is defined for
a relational database entity x that is a member of one of
the sets D(I), Rl(I), A(I), Rc(I), or Av(I). While the
database-interaction association is similar to a traditional
def-use association, it does have additional semantics that
are different from def-use associations for program variables.

As long as the source code of an application does not
change, traditional definition-use associations remain static
throughout the testing process. If a test suite T is inde-
pendent, the database interaction associations that measure
the suite’s adequacy depend only upon the initial test suite
state, ∆0. However, if the test suite is non-restricted, the
database interaction associations and the adequacy of T de-
pend upon all subsequent test suite states, 〈∆1, . . . , ∆e〉.

For example, if a database interaction association corre-
sponds to the execution of the SQL insert statement, the
set of associations that determines test suite adequacy might
change if we are viewing the application’s interactions at the
level of records or attribute values.

When nd corresponds to the execution of a SQL delete
statement, the semantics of a database-interaction associa-
tion differ from the traditional understanding of a definition-
use association. For example, the database-interaction as-
sociation 〈nd, nuse, x〉 with x ∈ Rc(I) requires the definition
and usage of a record that is stored within a specific rela-
tion of a specific database. If nd corresponds to the execu-
tion of the SQL delete statement, the record x is actually
removed from the database and is no longer available for
usage. Therefore, we allow the usage of x on node nuse to
correspond to the usage of a phantom record, or a record
that once existed in a previous database state but was re-
moved during testing. The existence of phantom records
(and analogously, phantom attribute values) requires the
ability to monitor the state of the database and maintain
information about deleted records. Yet, the usage of phan-
tom records ensures the creation of adequacy criteria that
require test suites to execute operations that delete records
from a database and then check to ensure that the records
are no longer available.

6.3 Test Adequacy for Database-Driven
Applications

If a method’s control flow graph is augmented with infor-
mation about the definition and usage of the entities within
a relational database, we can produce database-interaction
associations for these entities instead of (or, along with) the
variables in the application. A method’s interaction with a
database must be explicitly included within the chosen rep-
resentation of this program operation. Refer to Section 7
for a detailed discussion of the database interaction control
flow graph, a novel representation for database-driven appli-
cations that will enable the production of these associations
and the calculation of our adequacy criteria.

Many different measurements have been proposed to as-
sess the adequacy, or “goodness,” of a test suite [23]. The
standard all-DUs test adequacy criterion that drives def-
use testing [11] is not sufficient for our purposes because
it does not capture a program’s interaction with a rela-
tional database. Our family of test adequacy criteria in-
clude the all-database-DUs, all-relation-DUs, all-attribute-

DUs, all-record-DUs, and all-attribute-value-DUs adequacy
measures. Definition 8 defines the all-database-DUs test ad-
equacy criterion that requires a test suite T to produce a
definition clear path from each definition of a database in
D(I) to all subsequent uses of the same database.

Definition 8. A test suite T for database interaction con-
trol flow graph GDB = (NDB , EDB) satisfies the all-

database-DUs test adequacy criterion if and only if for each
association 〈nd, nuse, x〉, where x ∈ D(I) and nd, nuse ∈
NDB , there exists a test in T to create a complete path πx

in GDB that covers the association. 2

Due to space restrictions, we do not formally define the
all-relation-DUs, all-attribute-DUs, all-record-DUs, and all-

attribute-value-DUs test adequacy criteria. However, each of
these test criterion could be defined by simply substituting
D(I) in Definition 8 for one of the sets Rl(I), A(I), Rc(I),
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Figure 4: Test Adequacy Subsumption Hierarchy.

or Av(I). In this paper, we relate our family of adequacy
criteria to the control flow graph of a method. However, it
is possible to associate each test adequacy criterion with a
“database enhanced” version of a class control flow graph
(CCFG) [9], an entire interprocedural control flow graph
(ICFG) [10], or other CFG-based program representations.

6.4 Subsumption of Test Adequacy Criteria
A test adequacy criterion Cα subsumes a test adequacy

criterion Cβ if every test suite that satisfies Cα also satisfies
Cβ [16]. Figure 4 summarizes the subsumption relationships
between our proposed test adequacy criteria. In this graph,
nodes nα and nβ represent adequacy criteria and a directed
edge nα → nβ indicates that Cα subsumes Cβ. If we as-
sume that an arbitrary database Di contains relations with
at least one record and records with at least one attribute
value, then it is evident that |Rl(I)| ≤ |Rc(I)| ≤ |Av(I)|.
In a relational database instance with non-empty entities,
we can conclude that all-attribute-value-DUs subsumes all-

record-DUs, all-record-DUs subsumes all-relation-DUs, and
transitively, all-attribute-value-DUs subsumes all-relation-

DUs. Also, we know that all-attribute-value-DUs subsumes
all-attribute-DUs. Since any database Di can have an ar-
bitrary number of relations, there is no subsumption re-
lationship between all-database-DUs and all-relation-DUs,
all-record-DUs, and all-attribute-value-DUs, respectively

7. A UNIFIED REPRESENTATION

7.1 Overview of Representation Construction
Intuitively, the database interaction control flow graph is

a traditional CFG that contains transfers of control to one or
more database interaction graphs (DIGs). It is possible for
method m to contain multiple database interaction points.
Moreover, each interaction point can be viewed at five dif-
ferent levels of granularity. Since we allow the DICFG to
represent a program’s interaction with a database at mul-
tiple levels of granularity, the construction of a database
interaction control flow graph for method m can involve the
integration of multiple DIGs for each interaction point. As
our code examples in Figure 3 indicate, database interac-
tion points are often simple assignment statements. Yet, it
is also possible for a database interaction point to occur in
the predicate of a conditional logic statement or an iteration
construct. For simplicity, we will strictly consider database
interaction points that occur in assignment statements or

conditional logic predicates.2 In order to preserve the se-
mantics of program P , our formation of a DICFG for method
m will integrate a DIG for database interaction point Ir be-
fore the node in G where the interaction actually occurs.

We can use the equations described in Section 5.2 to aug-
ment the control flow graph for method m in program P
with information about the method’s interaction with a re-
lational database. In the algorithms designed to construct a
DICFG, we use the sets pred(nτ ) = {nρ|(nρ, nτ ) ∈ E} and
succ(nρ) = {nτ |(nρ, nτ ) ∈ E} to denote the set of predeces-
sors and successors of node nτ and nρ, respectively. For an
arbitrary m, a DICFG is constructed through the separate
usage of the CreateDIG algorithm for each database inter-
action point in m and all the desired levels of interaction
granularity. A single DICFG represents all the definitions
and uses of relational database entities that could occur dur-
ing the execution of m and all of the definitions and uses of
the variables in method m.

7.2 Representation Details
Each database interaction point in method m corresponds

to a specific node within control flow graph G. Definition 9
describes the notion of a location for any database interac-
tion point Ir. To ensure the ability to create a DICFG that
expresses a method’s interaction with relational database
entities at multiple levels of granularity, we use the data-
base granularity marker L ∈ {D,Rl,A,Rc,Av}. We use L
to denote whether an arbitrary DIG describes an interaction
at the granularity of database, relation, attribute, record, or
attribute value, respectively. Definition 10 defines the data-
base interaction graph (DIG) that we use to represent an
arbitrary interaction point.

Definition 9. The location of a database interaction point
Ir in method m’s CFG G = (N, E) corresponds to the node
nr ∈ N . 2

Definition 10. A database interaction graph for method
m’s database interaction point Ir is a four-tuple Gr =
〈Nr, Er, Ir, L〉, where Nr is a set of nodes, Er is a set of
edges, Ir is the interaction point, and L is the granularity
marker. For each n ∈ Nr we require that |pred(n)| = 1 and
|succ(n)| = 1. Each Gr must have nodes entryr and exitr

to distinguish the unique entry and exit points of Gr. 2

CreateDIG uses the CreateDIGNode algorithm to con-
struct a node for each of the database entities within the
input set Name that is enumerated using the equations pro-
vided in Section 5.2.3 If Ir is of type defining or using, Cre-

ateDIGNode simply constructs a node that defines or uses
entity x, respectively. However, if Ir is of type defining-
using, CreateDIGNode must inspect Ir in order to deter-
mine whether it should construct a defining or using node
for x. Each invocation of CreateDIG must be accompanied
by a database granularity marker L in order to accommodate
the calculation of test requirements for any of our adequacy

2
It is possible to produce a DICFG for an interaction that occurs

in the predicate of an iteration construct. We could integrate a DIG

before the iteration construct begins and at the end of the construct’s

body. Since the inclusion of these constructs obscures the essence of

our approach, we omit them.
3
Due to space limitations and the peripheral nature of CreateDIGN-

ode, we omit a listing of this algorithm.



Algorithm CreateDIG(Name, Ir, L)
Input: Set of Database Entity Names Name;

Database Interaction Point Ir;
Desired Level of Database Interaction Granularity L

Output: Database Interaction Graph Gr

1. Nr ← Nr ∪ entryr

2. np ← entryr

3. for x ∈ Name
4. do nc ← CreateDIGNode(Ir, x)
5. Er ←Er ∪ {(np, nc)}
6. Nr ← Nr ∪ {nc}
7. np ← nc

8. Nr ← Nr ∪ {exitr}
9. Er ← Er ∪ {(np, exitr)}
10. return 〈Nr, Er, Ir, L〉

Figure 5: The CreateDIG Algorithm.

Algorithm CreateDICFG(G, DIG)
Input: Traditional CFG G;

Set of Database Interaction Graphs DIG
Output: DICFG GDB

1. for Gr ∈ DIG
2. do I ′

r ← Ir ∈ Gr

3. E′
r ← Er ∈ Gr

4. nr ← location(I ′
r)

5. np ← pred(nr)
6. E ← E ∪ {(np, entryr ∈ E′

r}
7. E ← E ∪ {(exitr ∈ E′

r, nr)}
8. return (G, DIG)

Figure 6: The CreateDICFG Algorithm.

criterion from a single DICFG. Suppose that method m con-
tains a set of database interaction points I = {I1, I2, . . . , Is}
and the set DIG contains all of the database interaction
graphs for method m. Definition 11 formally defines our
understanding of a database interaction control flow graph
(DICFG).

Definition 11. A database interaction control flow graph

is a two-tuple GDB = (G, DIG), where G is a control
flow graph for method m and DIG = ∪{〈Nr , Er, Ir, L〉|r ∈
[1, s], L ∈ {D,Rl,A,Rc,Av}}. 2

Figure 6 provides the CreateDICFG algorithm for itera-
tively constructing our representation of an arbitrary method
that interacts with a relational database. The CreateDICFG

algorithm is responsible for extracting the location of the
database interaction that each Gr ∈ DIG represents and
connecting each Gr to G at this location. The lockAccount

operation’s DICFG that includes interactions at the data-
base and attribute level is depicted in Figure 7. Our DICFGs
include nodes to define temporary variables that provide ini-
tial values for the formal parameters of methods [7]. Fur-
thermore, we treat the entities within the relational database
as global variables and insert temporaries to initially define
the desired entities within the relational database [7].

8. EMPIRICAL STUDY

8.1 Experiment Goals and Design
We conducted an empirical study to investigate the prac-

ticality of computing our family of test adequacy criteria for
the test suites of database-driven applications. For the pur-
poses of this study, we manually modified the source code of

A

result_lock = update_lock.executeUpdate(qu_lock)

exit

exit Guse(temp4)

define(temp3) define(temp2)

Dentry entry

update_lock = m_connect.createStatement()

qu_lock = "UPDATE UserInfo ..." + temp1 + ";" 

completed = false

temp3 = LocalDatabaseEntity1:acct_lock

temp1 = parameter0:card_number

entry lockAccount

G G

G

r

r2

r 2

r 1

1

if( result_lock == 1)

completed = true

exit lockAccount

temp2 = LocalDatabaseEntity0:Bank

temp4 = LocalDatabaseEntity2:card_number

Figure 7: A DICFG for lockAccount.

two case study applications so that their source contained
the desired database interaction associations. Next, we used
an exhaustive intraprocedural dataflow analysis to collect
the number of definition-use and database-interaction asso-
ciations in the individual methods of each case study appli-
cation. We also counted the number of hanging definitions

of program variables and database entities. These hanging
definitions correspond to a program variable or database en-
tity that was defined and never involved in a subsequent use.
For the purposes of this study, we assumed the existence of
a hypothetical test suite T that was independent.

We empirically determined the time and space overhead
incurred during the enumeration of all the intraprocedural
definition-use and database-interaction associations in our
case study applications. To this end, we measured the wall
clock time required to compute associations at the level of
no database interaction (i.e. just program variables) and
each additional level of database interaction. Furthermore,
we measured the average and maximum number of nodes
and edges found in the CFGs of the applications that were
instrumented at the levels of no database interaction and all
of the additional levels of database interaction. All exper-
iments were conducted on a GNU/Linux workstation with
kernel 2.4.18-14smp, dual 1 GHz Pentium III Xeon proces-
sors, 1 GB of main memory, and a SCSI disk subsystem.

We used Soot 1.2.5 [19] to implement a tool that can cal-
culate the intraprocedural definition-use associations, data-
base interaction associations, and hanging definitions for all
of the methods in the selected applications. For the pur-
poses of this empirical study, our tool used the Jimple inter-
mediate representation [19] to analyze the methods in the
candidate applications.
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Figure 8: Empirical Study Results.

8.2 Case Study Applications
We selected two case study applications that were writ-

ten in the Java programming language and use the MySQL
relational database management system. The first appli-
cation, ATM, is an implementation of the example system
described in Section 2. According to JavaNCSS [1], ATM

contains 1732 non-commented source statements, not in-
cluding the MySQL driver that it uses to make connec-
tions to the database. This application contained 135
concrete methods that were subject to analysis. Further-
more, ATM interacts with a database that contains two re-
lations that were each seeded with two records. The sec-
ond application, mp3cdbrowser, is provided for download at
http://mp3cdbrowser.sourceforge.net/ and is designed
to manage a local collection of mp3 files (for brevity, we
refer to this application as mp3cd). According to JavaNCSS,
mp3cd contains 2432 non-commented source statements, not
including its MySQL driver. This application also uses the
Java bytecode of a mp3 manipulation API. The mp3 ma-
nipulation bytecodes and the complete mp3cd application
required the analysis of 452 methods. Finally, mp3cd inter-
acts with a relational database that contains seven relations
that were each seeded with two records.

8.3 Results Analysis
Figure 8 provides the results of our empirical study. Fig-

ure 8(a) describes the counts of database interaction associa-
tions at the level of database (D), relation (Rl), record (Rc),
attribute (A), and attribute value (Av), respectively. This
graph does not include a data point for the 8718 def-use as-
sociations and 1070 hanging definitions associated with the
mp3cd application and the 1910 def-use associations and 121
hanging definitions for ATM. mp3cd’s 1768 database interac-
tion associations due to attribute value interactions repre-
sent 16.8% of the total number of variable and database
entity associations. ATM’s 203 database interaction associ-
ations resulting from attribute value interactions represent

9.6% of the total number of def-use and database interac-
tion associations. Thus, our test adequacy criteria require
test suites to exercise an additional set of associations that
would be neglected by traditional def-use testing. At the
level of attribute value interaction, ATM’s 88 hanging defini-
tions represent approximately 30.2% of the associations and
definitions related to database entities. Finally, mp3cd’s 659
hanging definitions at the attribute level are 27.2% of the ap-
plication’s total number of associations and definitions. This
suggests that broadening the scope of our dataflow analysis
(by using a class control flow graph, for example) is likely
to produce a greater number of database interaction asso-
ciations and better represent the database interactions of a
database-driven application.

Figure 8(b) describes the time overhead associated with
the computation of intraprocedural def-use associations,
database interaction associations, and hanging definitions.
Each data point in this graph represents the average wall
clock time for five executions of the prototype tool on each
candidate application. When the mp3cd application con-
tained attribute value interactions, the intraprocedural anal-
ysis took approximately 5 more seconds to complete than
the same analysis on a version of mp3cd that contained no
database interactions (x-axis label None). Furthermore, the
analysis of ATM at the level of attribute value interaction
demonstrated a very minimal overhead when compare to
the analysis of ATM that included no database interactions.
Thus, the database interaction associations that are at the
heart of our adequacy criteria can be enumerated with ac-
ceptable time overhead.

Figure 8(c) and Figure 8(d) characterize the tool’s space
consumption by measuring the average and maximum num-
ber of nodes and edges in the original CFG and the DICFG
at each interaction level. The maximum node count for
mp3cd almost doubles and the average node count increases
by approximately 8 nodes when we examine the progression
from a traditional CFG to a DICFG with attribute value in-



teractions. The ATM application demonstrates a less marked
increase in the average and maximum number of nodes and
edges. Since an intraprocedural dataflow analysis can be ef-
ficiently conducted on our DICFGs, we can easily compute
the adequacy of independent test suites. Moreover, these
results place an upper bound on the time and space over-
head that would be associated with each of the frequent
re-computations required by non-restricted test suites.

9. RELATED WORK
Even though a significant amount of research has focused

on the testing and analysis of programs, there is a rela-
tive dearth of work that specifically examines the testing of
database-driven applications. While Jin and Offutt do high-
light test adequacy criteria that incorporate a program’s in-
teraction with its environment [12], these authors do not
specifically address the challenges associated with test ad-
equacy criteria for database-driven applications. In [4, 5],
Chays et al. describe a tool that populates databases with
data that satisfies the schema constraints in a fashion that
is reminiscent of the category-partition method. Unlike our
family of program-based test adequacy criteria, this approach
measures adequacy with respect to the specification of the
database and the program and additional testing heuristics.
While our family of adequacy criteria could serve as the
foundation for automated test data generation, the approach
described by Chays et al. will always require tester inter-
vention.

Neufeld et al. and Zhang et al. describe similar ap-
proaches that attempt to generate database states that are
consistent with respect to the constraints in the relational
schema [15, 22]. Yet, neither of these approaches explicitly
include a test adequacy criterion designed to isolate defects
in the programs that interact with databases. While Dauo
et al. propose a regression testing technique for database-
driven applications in [6], their exploration of data flow is-
sues does not include a discussion of the representation of
a database-driven application or a formal understanding of
a database interaction association. Chan et al. explore
white-box test case generation techniques that transform
SQL statements into general purpose programming language
constructs in [2, 3]. However, this approach describes a
program-based test adequacy criteria that focuses on a pro-
gram’s control flow graph and ignores potentially important
dataflow information.

10. CONCLUSION
In this paper, we address the fundamental issue of

test suite adequacy for database-driven applications. Our
dataflow-based family of test adequacy metrics are partic-
ularly tailored to capture a program’s interaction with a
database at multiple levels of granularity and to ensure the
existence of test suites that can detect type (1) violations of
database validity and completeness. Our empirical studies
indicate that it is possible to compute the intraprocedural
database interaction associations in a DICFG with a min-
imal time and space overhead. These studies also confirm
that a significant number of important database interactions
will be overlooked by traditional def-use testing. In future
research, our family of test adequacy criteria can serve as the
foundation for tools that focus on automated test generation
and regression testing for database-driven applications.
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